

content for reference only not for reuse Investigation of twin screw granulation: integrating experimental and computational content for reference only, not for reuse

content for reference only, not for reuse Ashish Kumar, Krist V. Gernaey, Ingmar Nopens , <u>Thomas De Beer</u>

IFPAC[®] Annual Meeting 2015 contession: Cob - Applications and tools ly, not for reuse

LABORATORY OF PHARMACEUTICAL PROCESS ANALYTICAL TECHNOLOGY CONTENDED OF PRARMACEUTICAL SCIENCES

content for referencie only not for relise Current solid-dosage manufacturing is slow and expensive content for reference only, not for reuse

Product collected after each unit operation content for reference only, not for reuse Actual processing time = days to weeks

content for reference only, not for reuse Traditional to new granulation method

Understanding the role of screw design

content for reference only, not for reuse

Consigma^m-1 system

(GEA pharma systems, Collette)

content for reference only, not for reuse Open barrel of a twin screw granulator

content for reference only, not for reuse

Consigma⁻¹ experiments

Consignation - 1 experiments

For details see: Kumar, et al. "Experimental investigation of granule size and shape dynamics in twin-screw granulation." *I J Pharma* 475.1 (2014): 485-495.1 CPC Pharma 475.1 (2014): 485-495.1 CPC Pharma 475.1

Consignation - 1 experiments

was measured using NIR chemical imaging content for reference only, not for reuse

content for reference only, not for reuse API Map was used to measure RTD

For details see: Kumar, et al. "Mixing and transport during pharmaceutical twin-screw wet granulation: Experimental analysis via crientical imaging." EU Pharma, Biopharma, 87.2 (2014), 279-289.

Measure of the mean of the distribution

content for reference only, not for reuse

content for reference only, not for reuse

$\tau = \frac{\int_0^\infty t \cdot e(t) dt}{\int_0^\infty e(t) dt}$ Mean residence time, τ

content for reference only, not for reuse

For details on results visit my presentation in Imaging Session of IPFAC 2015 on : "Mixing and transport during pharmaceutical twin-screw wet granulation: Experimental analysis via CONTENT FOR FOR CONCHEMICS ON Chemics Draging'

> or Read: Kumar, et al. *E J Pharma. Biopharma.* 87.2 (2014): 279-289.

contPopulation balance models can track granule attributes

content for reference only, not for reuse Semi-empirical kernels

Content for reuse $\beta(x, y) = \beta_0$

content for reference only, not for reuse Breakage Kernel

(Constant kernel)

content for reference only, not for reuse

15

Content for reference only not for reuse Particle population dynamics during granulation content for reference only not for reuse

content for reference only, not for reuse Including effect of granulator design on granule size distribution content for reference only, not for reuse

20

content for reference only, not for the adia of the a

content for reference only through for, highlige

	Low Screw Speed				High Screw Speed				
		1 mixing zone		2 mixing zones		1 mixing zone		2 mixing zones	
CO	Zone	farare	tereno	e ₁ -3	/, <u>3-</u> 5t	tor-seu	1 5 <u>-</u> 5	1-3	3-5
	RMSE	2.424	2.317	2.716	3.929	1.153	3.366	8.176	3.772
CO	R ² ntent	f0.989	fe ^p erro	e 0.984	0.983	for ^{0.989}	1Se ^{0.983}	0.97	0.982

content for reference only,1% notadior block use

2nd kneading block

5

High throughput, high L/S

Contont for reference High inroughput, high L/S										
CU	Low Screw Speed					High Screw Speed				
		1 mixing zone		2 mixing zones		1 mixing zone		2 mixing zones		
CO	Tent	får3re	ferenc		, 315 t	fol-3eu	<mark>se</mark> -5	1-3	3-5	
	RMSE	2.424	2.317	2.716	3.929	1.153	3.366	8.176	3.772	
	R ²	0.989	0.987	0.984	0.983	0.989	0.983	0.97	0.982	
COI	ßtent	1C5E-C3	3.12E-0 (3.11H-03	1.20E-02	236E-04	295E-01	8.97E-02	2.44E-01	
	S ₀	0.030	3.304	0.023	0.062	0.051	1.180	0.030	3.340	
COI	α	6.01E-02	1.65E-07	1.47E-05	5.09E-04	1.86E-04	1.14E-06	1.39E-03	6.37E-07	
	y tent	101 _{0.52}	ter <u>8.4</u> 2	e 03.86	, n <u>0.</u> <u>6</u> <u>8</u>	or 5.83	ISE 0.31	0.26	0.48	
	φ	0.97	0.72	0.93	0.98	0.41	0.53	1.00	0.48	
		CONTE	iot the	reter	ence c	oniy, n	ot tor	reuse		

content for reference only, not for reuse

content for reference only, not for reuse

content for reference only, not for reuse

- content for reference only, not for reuse
 - content for reference only, not for reuse

content for reference only, not for reuse Conclusions

- contervite experimental study, an improved insight can be obtained by model-based analysis.
- converting kinetics requires a separate explanation in the twin-screw granulation modelling.
- ^{co}Aggrégation and breakage are most dominant phenomena in the twin-screw granulation.
- Particle population dynamics and screw geometry effect can be better understood by compartmental PBM, and can ultimately be used for predictive modelling of twin-screw granulation.
 Content for reference only, not for reuse

content for reference only, not for reuse Thomas.DeBeer@UGent.be content for reference only, not for reuse

content for reference only, not for relieves ratio High

content for reference only, not for reuse ratio High

