Evaluation of particle size evolution during high-shear wet granulation using twin-screw granulator

Ashish Kumara,b, Iurgen \ercruyssé ${ }^{\text {c }}$, Krist V. Gernaey ${ }^{\text {d }}$, Ingmar Nopens ${ }^{\text {b }}$; Thoməs De Beer ${ }^{\text {a }}$
a. Laboratory of Pharmaceutical Process Analytical Technology, Dept. of Pharmaceutical Analysis, Faculty of Pharmaceutical Sciences, Ghent University, Harelbekestraat 72, B-9000 Ghent, Belgium
b. BIOMATH, Dept. of Mathematical Modelling, Statistics and Bioinformatics, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B- 9000 Gent, Belgium
c. Läboratory of Pharmaceutical Fechnology, Dept. of Pharmaceutics, faculiy of Pharrraceuticai Sciences, Ghent University, Harelbekestraat 72, B-9000 Ghent, Belgium
d. Center for Process Engineering and Technology, Department of Chemical and Bioche nica! Ergineering Techiriical University of Denmark, 2800 Kongens Lyngby, Denmark

Introduction

- in pharmaceutical solld dosage manafacturing, matiy physical and chemical properties related to product grality (e.g. tablet final finish, drug centent uniformity etc.) depend on the granules' shape and size distribution used.
tifi a cwin-screw graniliator (TSG) the arrangement of transport and kneading element modules causes mixing and impacts distribution.
-The primary shaping mechanisms behind this distribution during wet-granulation are not well unaerstood due to the opacity of the multiphase system -This study experimentally characterises the change in granule size distribution GSD) alons the TSG length in order to understand the function of individual screw modules and their interaction in the TSG.

Continuous high shear wet granulator

woriong principle

Experimental Plan

Contruous twin-screvu Ca granulatoo (25 rim diameter), ConsiGma ${ }^{\text {TM }}$ (GEA Pharma Systems nv., Wommelgem, Belgium).

Formulation of granules

Láctose/ ${ }^{1}$ VP ($\left.97.5 /{ }^{\prime} 2.5\right)^{\prime}$ was granulatea with a 0.01% cochenille red aqueous solution. After granulation, wet granules ware collected and tray dried

Experimental design

Factors: Resnonses.
kneading elements ($2,4,6$ and 12) GSD via laser microscopy screw speed (500-900 rpm)
powder feed rate ($10-25 \mathrm{~kg} / \mathrm{i})$
liquid content (4.58-6.72 \% (w/w))
Fall factorial design, $4 \times 2 \times 2 \times 2=32$ más, 3 center points

Sampling Approach

Comparative study done for samples from location 3 and 5 to see the effect of changes in parameters on the granules at "miveng-criticar poins

Conclusions:

- The study provides an understanding of the effectiveness of various equipment parameters with respect to process parameter changes during granulation in a TSG.
- fere High liquid-solid ratio along with high mixing (i.e. increasing the number of kneading elements) leads to higher granulation yield.
- The second kneading zone in the granulator is mostly involved in reshaping the PSD formed through the first kneading zone by breakage and shear-squeeze the over wet granules to provide more liquid for further granulation.
- Experimental data are of key importance for better understanding the mechanisms involved in wet-granulation using TSG and are a prequisite for mechanistic process modelling which can further improve the available knowledge and control of the granulation process.

Acknowledgments

Financial support for this research from the BOF (Bijzonder Onderzoeksfonds Universiteit Gent, Research Furid Ghent University) is gratefulliy acknowiedgea.

