Linking granulation performance with residence time and granulation liquid distributions in twin-screw granulation: an experimental investigation

Ashish Kumar^{a,b}, Maija Alakarjula^c, Valérie Vanhoorne^d, Maunu Toiviainen^e, Fien De Leersnyder^b, Jurgen Vercruysse^d, Mikko Juuti^e, Jarkko Ketolainen^c, Chris Vervaet^d, Jean Paul Remon^d, Krist V. Gernaey^f, Thomas De Beer^{b,1}, Ingmar Nopens^{a,*}

^aBIOMATH, Dept. of Mathematical Modelling, Statistics and Bioinformatics, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Gent, Belgium

^bLaboratory of Pharmaceutical Process Analytical Technology, Dept. of Pharmaceutical Analysis, Faculty of Pharmaceutical Sciences, Ghent University, Harelbekestraat 72, B-9000 Ghent, Belgium

^cSchool of Pharmacy, University of Eastern Finland, Kuopio, Finland

^dLaboratory of Pharmaceutical Technology, Dept. of Pharmaceutics, Faculty of Pharmaceutical Sciences, Ghent University, Harelbekestraat 72, B-9000 Ghent, Belgium

^eOptical Measurement Technologies, VTT Technical Research Centre, Kuopio, Finland

^fCAPEC-PROCESS Research Center, Department of Chemical and Biochemical Engineering, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark

*Email address: ingmar.nopens@ugent.be, Tel.: +32 (0)9 264 61 96; fax: +32 (0)9 264 62 20

Email addresses: ashish.kumar@ugent.be (Ashish Kumar), maijaa@student.uef.fi (Maija Alakarjula), valerie.vanhoorne@ugent.be (Valérie Vanhoorne), maunu.toiviainen@vtt.fi (Maunu Toiviainen), fien.deleersnyder@ugent.be (Fien De Leersnyder), jurgen.vercruysse@ugent.be (Jurgen Vercruysse), mikko.juuti@vtt.fi (Mikko Juuti), jarkko.ketolainen@uef.fi (Jarkko Ketolainen), chris.vervaet@ugent.be (Chris Vervaet), jeanpaul.remon@UGent.be (Jan Paul Remon),

kvg@kt.dtu.dk (Krist V. Gernaey), thomas.debeer@ugent.be (Thomas De Beer)

Preprint submitted to European Journal of Pharmaceutical Sciences

URL: www.biomath.ugent.be (Ingmar Nopens)

¹Shared last authorship

1 Abstract

Twin-screw granulation is a promising wet granulation technique for the continuous man-2 ufacturing of pharmaceutical solid dosage forms. A twin screw granulator displays a short 3 residence time. Thus, the solid-liquid mixing must be achieved quickly by appropriate 4 rrangement of transport and kneading elements in the granulator screw allowing the pro-5 uction of granules with a size distribution appropriate for tableting. The distribution of 6 residence time and granulation liquid is governed by the field conditions (such as location 7 and length of mixing zones) in the twin-screw granulator, thus contain interesting informa-8 tion on granulation time, mixing and resulting sub-processes such as wetting, aggregation 9 and breakage. In this study, the impact of process (feed rate, screw speed and liquid-to-solid 10 ratio) and equipment parameters (number of kneading discs and stagger angle) on the res-11 idence time (distribution), the granulation liquid-powder mixing and the resulting granule 12 size distributions during twin-screw granulation were investigated. Residence time and axial 13 mixing data was extracted from tracer maps and the solid-liquid mixing was quantified from 14 moisture maps, obtained by monitoring the granules at the granulator outlet using near 15 infra-red chemical imaging (NIR-CI). The granule size distribution was measured using the 16 sieving method. An increasing screw speed dominantly reduced the mean residence time. 17 Interaction of material throughput with the screw speed and with the number of kneading 18 discs led to most variation in the studied responses including residence time and mixing ca-19 pacity. At a high screw speed, granulation yield improved due to high axial mixing. However, 20 increasing material throughput quickly lowers the yield due to insufficient mixing of liquid 21 and powder. Moreover, increasing liquid-to-solid ratio resulted in more oversized granules, 22 and the fraction of oversized granules further increased at higher throughput. Although 23 an increasing number of kneading discs was found to be critical for achieving a uniform 24 distribution of the granulation liquid, the granulation performance was hampered due to 25 insufficient solid-liquid mixing capacity of the current kneading discs which is essential for 26

wet granulation. Thus, a balance between material throughput and screw speed should be
strived for in order to achieve a specific granulation time and solid-liquid mixing for high
granulation yield. Additionally, more efforts are needed both in modification of the screw
configuration as well as the geometry of the mixing elements to improve the mixing capacity
of the twin-screw granulator. The results from the current experimental study improved
the understanding regarding the interplay between granulation time and the axial and solidliquid mixing responsible for the granulation performance in twin-screw wet granulation.

8

Keywords: residence time distribution, axial mixing, NIR chemical imaging, solid-liquid
 mixing

11 1. Introduction

Efforts towards switching from batch to continuous processing with 24/7 production ca-12 pacity form one of the major considerations in the pharmaceutical industry for improving the 13 operational efficiency, including enhancing quality assurance (Poechlauer et al., 2012). How-14 ever, a transformation to completely continuous processing requires all the unit operations 15 to be performed in a continuous mode with inter-compatibility, both in terms of capacity 16 and processing time. In this context, twin-screw granulation has emerged as a promising 17 technology for continuous wet granulation in continuous solid dosage manufacturing. A man-18 ufacturing line with continuous twin-screw granulator (TSG) followed by (semi-)continuous 19 drying, milling and tableting units is conceptualised for a continuous 'from powder to tablet' 20 manufacturing system. Several studies have shown that the mean residence time \bar{t} in a TSG 21 (which is generally between 2 and 40 seconds) is much shorter compared to the granulation 22 time available in a typical batch granulator, which is in the order of minutes (Kumar et al., 23 2013). Thus, the solid-liquid mixing in the TSG must be achieved in a short period by ap-24 propriate arrangement of transport and kneading elements in the granulator barrel allowing 25

the production of granules with a granule size distribution (GSD) suitable for downstream 1 operations (drying, tableting, etc.). Therefore, it is interesting to investigate how different 2 rocess and equipment settings lead to changes in the residence time distribution (RTD), 3 xial and solid-liquid mixing which consequently lead to a certain granulation yield. This а 4 is particularly important as it could be concluded from an earlier study that a residence 5 time increase beyond a certain threshold is the result of a change in flow regime inside the 6 TSG, transitioning from mixed flow to plug flow (Kumar et al., 2014). As the plug flow 7 regime cannot be desired for mixing which is ultimately required for granulation, a detailed 8 study investigating the link between mixing and transport characteristics in the TSG and 9 the granulation performance is required. 10

11

Experimental investigation of twin-screw granulation RTD and its impact on granulation 12 performance has already been of interest for several other research groups. Dhenge et al. 13 (2010) measured the RTD using the sampling cup method under different processing con-14 ditions and showed that process parameters such as screw speed and liquid-to-solid ratio 15 (L/S) have vital influence on the residence time. The same RTD measurement approach 16 was applied by El Hagrasy et al. (2013) to estimate the effect of changes in formulation 17 properties such as raw material composition as well as granulation liquid properties such as 18 viscosity on the granule properties. However, \bar{t} for a typical screw design is between 2-40 s 19 which is in the order of the sampling time in the sampling cup method, making this method 20 unsuitable for TSG studies (Li et al., 2014). In a remarkable attempt, Lee et al. (2012) 21 obtained the RTD for TSG using positron emission particle tracking (PEPT) to study the 22 axial mixing of the processed material inside the TSG barrel, which is essential information 23 for the optimisation of the obtained granule properties. Although PEPT is very powerful 24 technique, this method based on the single-particle tracking also suffers from major chal-25 lenges as discussed by Kumar et al. (2014, 2015). Recently, Li et al. (2014) used a visual 26

technique based on digital video recording to measure RTD as a function of feed rate during 1 twin-screw granulation. Results from that study indicated a significant increase in \bar{t} and a 2 narrowing of RTD at higher feed rate. The study questioned the role of the kneading block 3 as mixing zone which is atypical since RTD can only be used to quantify axial mixing. Mix-4 ing of solid-liquid is typically driven by a combination of both axial and transverse mixing 5 inside the TSG. Thus, this cannot be investigated solely from an RTD study. However, only 6 small number of investigations have attempted to quantitatively describe the influence of process parameters on solid-liquid mixing performance (Vercruysse et al., 2013). This is 8 mainly because of the lack of suitable techniques allowing detailed local flow characterisa-9 tion in systems such as the TSG, especially due to their opacity. Vercruysse et al. (2013) 10 applied an image data collection method based on near infrared (NIR) chemical imaging to 11 evaluate the influence of the screw configuration, liquid addition method and rate, and the 12 barrel filling degree on the moisture homogeneity during twin-screw granulation. Applying 13 the same measurement approach, a tracer (theophylline anhydrate) was injected in the gran-14 ulator and monitored to investigate the RTD of the tracer inside the barrel as a function of 15 screw speed, material throughput and number as well as stagger angle of the kneading discs 16 in the screw configuration of the TSG. Model-based analysis of these experimental data was 17 also performed to further investigate the mixing and flow behaviour inside the TSG (Kumar 18 et al., 2015). However, a relation between granulation time (measured as the mean residence 19 time) and the mixing quality (measured as the axial mixing and the solid-liquid mixing), all 20 responsible for the shape of the granule size distribution, is still not established. 21

22

In the present study, NIR chemical imaging was used as analytical technique to simultaneously and qualitatively and quantitatively characterise the flow and axial mixing of tracer material as well as the mixing of the two phases, i.e. solid formulation material and granulation liquid, as function of process (screw speed, material throughput and liquid-to-solid ratio) and equipment (number and stagger angle of kneading discs in the screw configuration) parameters of the twin-screw granulation. Since residence time and its distribution,
as well as solid-liquid mixing dictate the final granulation yield, the resulting GSD was also
measured to understand the overall influence of different flow and mixing conditions.

5 2. Materials and methods

6 2.1. Pharmaceutical formulation

α-Lactose monohydrate (Pharmatose 200M, Caldic, Hemiksem, Belgium) was used as
model excipient. Distilled water was added as granulation liquid. To evaluate the residence
time of the material inside the barrel, theophylline anhydrate (Farma-Química Sur, Malaga,
Spain) was used as tracer component.

¹¹ 2.2. Continuous twin screw granulation

Granulation experiments were performed using a 25 mm diameter co-rotating TSG, which 12 is the granulation module of the ConsiGma-25 unit (GEA Pharma Systems, Collette[™], 13 Wommelgem, Belgium). The granulator screw has a length-to-diameter ratio of 20:1 (Fig. 1). 14 The TSG barrel consists of a feed segment, where the powder enters the barrel and is 15 transported through the conveying zone to the work segment, where the granulation liquid 16 is added to the powder which is further intensively mixed by a combination of kneading discs 17 and transport elements. The screw configuration is composed of kneading zones consisting 18 of maximum 6 kneading discs in each zone (Length $= \frac{Diameter}{4}$ for each kneading element) 19 at an angle of 30° and 60° (Fig. 1). Both kneading zones are separated by a conveying 20 element (Length = 1.5 Diameter). When more than six kneading discs are used, an extra 21 conveying element (Length = 1.5 Diameter) is implemented between the two mixing zones. 22 Two narrow kneading discs (Length $= \frac{Diameter}{6}$) were placed at the end of each screw 23 in order to reduce the amount of oversized agglomerates, as reported by Van Melkebeke 24

et al. (2008). The barrel jacket is preheated to 25°C. During processing, pure α -lactose 1 monohydrate is gravimetrically fed into the granulator by using a twin-screw feeder (KT20, 2 K-Tron Soder, Niederlenz, Switzerland). Distilled water as granulation liquid is pumped into 3 the screw chamber by using a peristaltic pump (Watson Marlow, Cornwall, UK) and silicon 4 ubings connected to the nozzles of diameter 1.6 mm. The granulation liquid is added before t 5 the first kneading element by dripping through two liquid feed nozzles, each nozzle located 6 on top of each screw in the barrel (Kumar et al., 2014). A pulse of anhydrous theophylline (2% (w/w) of the material throughput) used as tracer is manually added into the powder 8 inlet port of the granulator. The TSG has an inbuilt torque gauge and the steady state 9 criteria are decided on the equilibration of the measured torque of the granulator. The 10 torque values obtained after equilibration of the process are averaged to give the overall 11 torque during each run. 12

13

[Figure 1 about here.]

14 2.3. Description of NIR chemical imaging setup

Wet granules from the granulator output fall on a conveyor belt (Mini, ENP, Hjälteby, 15 Sweden) which is moving at a speed of 3.12 cm/s. Spectral images of the wet granules 16 are collected using a line-scanning (pushbroom) hyperspectral camera (SWIR, Specim Ltd., 17 Oulu, Finland). The camera sees a row of 320 spatial pixels at a time, and disperses the 18 incoming light from each pixel in the spectral range 970-2500 nm onto one column of the 19 320×256-pixel mercury-cadmium-telluride (MCT) detector (14-bit readout, cooled to -70°C 20 with a 4-stage Peltier system). The camera-to-belt distance is set such that the imaged line 21 had a length of 10 cm on the conveyor belt, and the speed of the conveyor belt is adjusted to 22 achieve a spatial resolution of $312 \times 312 \ \mu m^2$ per pixel at the maximum frame rate permitted 23 by the camera (100 frames per second). The conveyor belt and the sample material on it 24 were illuminated with two rows of three 75-W halogen lamps (Specim Ltd., Oulu, Finland) 25

at a distance of 35 cm, and the measurement is conducted in diffuse reflectance mode in the 45°-0°-45° geometry (For details see (Kumar et al., 2014)). Each collected spectral image consists of 2500 frames (25 seconds measurement, 2500×320 spatial pixels, 256-element spectrum at each spatial pixel) which corresponds to an area of 10×64 cm² on the conveyor belt. At a material throughput of 10-25 kg/h the dry mass of material in one spectral image is approximately 69-173 g.

7 Extraction of relevant information from spectral data

The analysis of the hyperspectral images from the RTD and solid-liquid measurements 8 performed in two steps. In a first step, spatial pixels corresponding to the plastic conis 9 rever belt were eliminated from the data set via partial least squares discriminant analysis 10 (PLS-DA) classification (Kumar et al., 2014). In the second step, the NIR spectra in the 11 remaining pixels corresponding to the granules were subjected to semi-quantitative anal-12 ysis of theophylline content and moisture content. In both cases, the spectral range was 13 narrowed to 1100-2200 nm and the spectra were subjected to the standard normal variate 14 (SNV) pretreatment to eliminate the additive baseline offset variations and multiplicative 15 scaling effects in the spectra which may be caused by experimental conditions such as shad-16 owed regions near large granules and possible differences in granule density. Subsequently, a 17 measure for the theophylline level was used to quantify the RTD using the spectral matched 18 filter (SMF) method which provides a highly selective response for the target analyte. A 19 measure for the moisture level was obtained for studying solid-liquid mixing using the band 20 ratio method (Fig. 2) (Vercruysse et al., 2013). The NIR chemical imaging measurement 21 setup and extraction of relevant information from chemical images was discussed in more 22 detail by Vercruysse et al. (2013) and is schematically shown by Kumar et al. (2014). 23

24

[Figure 2 about here.]

¹ 2.4. Experimental design

² 2.4.1. Experimental procedure

³ A full factorial experimental design was performed to evaluate the influence of screw ⁴ speed (500-900 rpm), material throughput (10-25 kg/h), L/S (6-8%), number (4, 6, 12) and ⁵ stagger angle (30°, 60°) of the kneading discs in the screw configuration on the RTD and ⁶ axial mixing of the material. Three center point experiments were performed as well, result-⁷ ing in 48 + 3 = 51 experiments.

8

At the outlet of the granulator, the near infrared chemical imaging (NIR-CI) system was 9 used to measure solid-liquid mixing and the theophylline dynamics. A 25 s chemical imaging 10 measurement without tracer injection for each design experiment (run) was used to measure 11 the spatial distribution of the granulation liquid which was calculated using the band ratio 12 method explained in section 2.3. For the residence time measurements, anhydrous theo-13 phylline (2% (w/w)) of the material throughput per minute, corresponding to 3.33, 5.83 and 14 8.33 g for throughputs of 10, 17.5 and 25 kg/h respectively) was spiked. Since it took 5 s for 15 the conveyor belt to move from below the granulator output to the location of the spectral 16 image collection, the chemical imaging measurements were started 5 s after injecting the 17 tracer (theophylline) for each experiment. Thus, the first frame of the spectral image cor-18 responded to the instant of theophylline addition. The spatial distribution of theophylline 19 during the 25 s measurement was calculated with the SMF method as explained in sec-20 tion 2.3. 21

22

The intensity of the pixels in the obtained chemical map was thus proportional to the true moisture and theophylline levels. Hence, the moisture distribution and the RTD for each run was determined via inspecting the temporally scanned direction of the spectral image.

26

¹ 2.4.2. Estimation of RTD and axial mixing efficiency

² Conventionally, a RTD is obtained by injecting a pulse of tracer into the system at the ³ inlet, and the residence time function, e(t), is calculated as

$$e(t) = \frac{c(t)}{\int_0^\infty c(t)dt} \tag{1}$$

where c(t)dt is the concentration of the tracer at the outlet between t and $t + \Delta t$. In this study, the exit age distribution of the tracer molecule (theophylline) was derived from the tracer concentration c_i (as estimated using the SMF method) between t and $t + \delta t$ in the temporal profile of the discrete tracer map (top of Fig 2) calculated as

$$e(t) = \frac{c_i}{\sum_{i=1}^t c_i \Delta t} \tag{2}$$

⁸ This tracer map was transformed into the exit age distribution curve, i.e. the RTD based ⁹ on the mean tracer concentration, e(t) between t and t + dt (RTD plot in Fig 2), which was ¹⁰ then used to calculate the mean residence time \bar{t} as the ratio of the first and the zeroth ¹¹ moment using the following equation

$$\bar{t} = \frac{\int_0^\infty t \cdot e(t) dt}{\int_0^\infty e(t) dt}$$
(3)

The RTD shape, was normalised as $e(\theta) = \bar{t}.e(t)$, where dimensionless time $\theta = t/\bar{t}$ is introduced. The degree of axial mixing in the granulator can be quantified by calculating the dimensionless Péclet number Pe which represents the ratio of the rate of axial transport by convection and axial transport by diffusion or dispersion. By treating the boundary condition of the granulator as a closed system with no dispersion or radial variation in concentration either upstream or downstream, the following equation can be derived (Fogler, 1 2006)

$$\frac{\sigma_{\bar{t}}^2}{\bar{t}^2} \approx \frac{2\text{Pe} - 2 + 2 \cdot e^{-\text{Pe}}}{\text{Pe}^2} \tag{4}$$

 $_{2}~$ where, the $\sigma_{\tilde{t}}^{2},$ which measures the width of the RTD, is calculated as:

$$\sigma_{\bar{t}}^2 = \frac{\int_0^\infty \left(t - \bar{t}\right)^2 \cdot e(t)dt}{\int_0^\infty e(t)dt}$$
(5)

and the σ_t^2/t^2 in eq. 4 represents the normalised variance σ_{θ}^2 , which is the normalised second 3 central moment of the RTD curve. When σ_{θ}^2 approaches zero, Pe tends to infinity indicating 4 that the extent of axial mixing is low. Thus, when the Pe turns out to be large, the granulator 5 characteristics approach those of a plug-flow reactor (PFR). This regime is not favourable 6 in continuous processing as the existence of plug flow indicates poor axial mixing in the 7 ranulator which is not desirable as discussed by Kumar et al. (2014). The study showed g 8 that conditions leading to a greater extent of plug flow ultimately result in a complete 9 disruption due to jamming of the TSG. 10

11 2.4.3. Estimation of moisture distribution

A large amount of chemical imaging data were collected resulting in spatio-temporal moisture maps of wet granules for each experimental run (Fig. 2). The liquid-solid mixing can be seen as a process in which a complex liquid exchange network between particles of the processed material is generated. The pixel intensity values in the moisture maps are indicative of this liquid exchange level or distribution. The statistical phenomena on uncertainty of the pixel intensity at a randomly selected point on the moisture map can be quantified as Shannon entropy (Guida et al., 2010) given as,

$$H(X) = \sum_{j=1}^{n} P(X_j) \log_{256}(1/P(X_j)) = -\sum_{j=1}^{n} P(X_j) \log_{256} P(X_j)$$
(6)

where X is the value of the pixel index j and n is total number of pixels in the moisture 1 map. The Shannon entropy, which is used in Information Theory, thus appears to be a useful 2 parameter for describing the mixing efficiency in a system (Guida et al., 2010). Since the 3 moisture maps were not calibrated for quantitative moisture content determination, entropy 4 was selected to evaluate the liquid distribution. Entropy only envisages the distribution itself 5 and not the values that pixel intensity may take. In this study, the logarithm to the base 6 256 was applied, as the 8-bit moisture map allows displaying the moisture distribution using 7 256 different intensities. Since a progression in mixing causes an increase in uncertainty 8 of pixel intensity transitions in the moisture map, a mixing index (MI) based on such an 9 uncertainty was defined as: 10

$$MI = -\frac{1}{\log_{256}(n)} \sum_{j=1}^{n} P(X_j) \log_{256} P(X_j)$$
(7)

¹¹ The mixing index (MI) value lies between 0 and 1 indicating "no mixing" and "perfect mix-¹² ing" of the granulation liquid, respectively.

13

Since the MI is derived from the bulk solid-liquid mixing outcome, hereby completely 14 avoiding the dynamics of the mixing process which lead to variations in mean moisture con-15 tent in the granules produced at different times, an additional method based on calculation 16 of frequency and amplitude of variations in the mean profile of the moisture content was 17 used to quantify the perturbations in the solid-liquid mixing (Fig. 3). A lowpass filter was 18 applied on the fast Fourier transform (FFT) of the mean moisture profile to remove noise 19 and only extract the main frequency and its amplitude value for every moisture mean profile 20 curve. An inverse FFT was then performed after the filtering to return to the time domain. 21 (Cooley and Tukey, 1965). An increase in either the frequency or corresponding amplitude, 22 indicated conditions leading to higher fluctuations. 23

[Figure 3 about here.]

² 2.5. Quantification of effects and interactions of factors

The factor effects upon the responses from the experimental design derived from the CI-data and granule size measurements were estimated. Since multiple responses (\bar{t} , σ_{θ}^2 , Pe, moisture entropy and GSD) were determined, it was helpful to fit a model simultaneously representing the variation of all responses to the variation and interactions of the factors. Therefore, using the Modde 10.1 software (Umetrics, Umeå, Sweden), partial least squares (PLS) modelling taking all responses simultaneously into account, was employed.

9

1

The effect plots are used to display the change in the response (y-axis) when each process 10 factor (screw speed [RPM], material throughput [MFR], L/S [LSR], number of kneading 11 discs [NK] and stagger angle [SA]) varies from its low to its high level, keeping all other 12 factors at their center values of the interval (Fig. 5 - 11). The y-axis indicates the estimated 13 effect which has a value of twice the corresponding coefficients of the regression model. For 14 each factor, the uncertainty of the effect is indicated by the 95% confidence interval error 15 bar. When an interaction effect prevails, the synergistic or antagonistic effect of one factor 16 depends on the level of another factor. The interaction effect represents the synergy or an-17 tagonism between two factors in explaining a response. In these plots the effects of factors 18 on the response are sorted from the largest to the smallest. The factors and interaction 19 terms with insignificant effect (those where the confidence interval includes zero) were re-20 moved from the model (Eriksson et al., 2000). Additionally, the interaction plot was used to 21 display the predicted change in the response when one factor varies, and the second factor is 22 set at both its low and high level, all other factors being set on their centre value. When in 23 such a plot the two lines are parallel one can conclude that there is no interaction between 24 the two factors, whereas when they cross each other there is a strong interaction. How-25 ever, one should still be careful when interpreting the results, because sometimes, despite 26

the interaction between the factors, their effect on the response may not be significant, i.e.
resulting only in a minor variation of the response.

3 3. Results and discussion

The performed design of experiments resulted in 51 residence time profiles (Fig. 4), and 4 solid-liquid mixing and granulation performance results (see the overview of the performed 5 experiments and obtained responses in the supplementary table S1). The power input 6 variation was indicated by the measured torque in the granulator drive and the granulation 7 time variation was expressed by the \bar{t} (Fig. 5). The variation in axial mixing was derived 8 from the width of the normalised RTD, i.e. the σ_{θ}^2 and the change in relative magnitude 9 of convective and dispersive transport capacities was given by Pe (Fig. 8). The change in 10 solid-liquid mixing of the bulk material was quantified as effect on MI. The frequency and 11 amplitude of the mean moisture profiles quantified the dynamics in the solid-liquid mixing 12 in the TSG (Fig. 10). To understand the role of process and screw design parameters on 13 granulation performance, it is important to first discuss the observed effects of the factors on 14 these responses (section 3.1-3.4). This will feed the detailed discussion to link granulation 15 time and mixing performance with the resulting granulation yield in the follow-up section 3.5. 16

17

[Figure 4 about here.]

¹⁸ 3.1. Change in torque at different process conditions

The torque of the granulator drive indicates the energy input to the granulation process by the motor drive. In this study, all the factors originating from the screw configuration and process conditions had a significant influence on the measured torque level (Fig. 5). This is in accordance with earlier studies on the effect of changing the process parameters on the torque level (Dhenge et al., 2010; Vercruysse et al., 2015; Kumar et al., 2014). An increase in the number of kneading discs most significantly increased the torque level and an increase

in L/S most significantly reduced the torque level. An increase in the material throughput 1 resulted in higher torque. However, the material throughput had a significant interaction 2 with L/S [LSR*MFR] (Fig. 6i). At a low material throughput increasing L/S resulted in 3 an increased torque, whereas at a high material throughput increasing L/S resulted in a 4 significant reduction in the torque. An increase in the screw speed led to a reduction of 5 the torque. However, due to the interaction between L/S and the screw speed [LSR*RPM], 6 reduction in screw speed at a high L/S resulted in a sharp increase in the torque level compared to low L/S (Fig. 6ii). Increasing stagger angle resulted in a reduction of torque. 8 However, this effect was found to be more pronounced at a low material throughput. At 9 high material throughput, an elevated flow restriction by increasing stagger angle resulted in 10 an increased torque level (Fig. 6iii). The interaction between the material throughput and 11 screw speed [MFR*RPM], which impacts the fill ratio, resulted in a reduction of the torque 12 when both screw speed and material throughput were increased simultaneously (Fig. 7i). 13 At a low material throughput, this interaction did not exist. The highest torque level (12.41) 14 N.m) was observed at a throughput of 25 kg/h, L/S of 6%, screw configuration with 12 15 kneading discs at 60° and screw speed of 500 rpm. The torque level was lowest (0.38 N.m) 16 at a throughput of 25 kg/h, L/S of 8%, screw configuration with 4 kneading discs at 30° and 17 screw speed of 900 rpm. 18

19

20

[Figure 5 about here.]

These observations suggest that the load on the screws (based on screw speed and material throughput) and the flow restriction (based on number of kneading discs and stagger angle) dictate the torque level of the granulator drive. Besides, at low barrel fill ratio, i.e. when the flow inertia is low, an increased moisture content at higher L/S causes sluggish flow and consequently higher torque. However, at a high throughput when more material is present, the inertial force is high and increasing L/S lubricates the granular flow leading to a reduction of the torque. The observed significant influence of all the factors on the torque level
also suggests that the energy input to the system varied significantly for all the changes in
process parameters. Thus, the studied experimental domain was suitable to investigate the
effects of equipment and process parameters on other responses.

- 5
- 6

[Figure 6 about here.]

7 3.2. Granulation time at different process conditions

The granulation time in the TSG measured as \bar{t} was most influenced by the screw speed 8 and the number of kneading discs (Fig. 5). An increase in the screw speed resulted in a 9 lower \bar{t} , i.e. the RTD profiles consistently shifted to the left in Fig. 4, whereas an increase 10 in number of kneading discs led to an increase in the residence time. Increasing material 11 throughput resulted in a reduction in the \bar{t} , which was also observed in earlier studies (Ku-12 mar et al., 2014; Dhenge et al., 2011). Additionally, \bar{t} was significantly reduced by the 13 interaction between material throughput and screw speed [MFR*RPM] (Fig. 7i). At a high 14 fill ratio (i.e., increasing throughput at low screw speed) this interaction effect was damp-15 ened, but at lower fill ratio (i.e., increasing throughput at high screw speed), the \bar{t} reduced 16 significantly. An opposite effect on \bar{t} was detected when more kneading discs were included 17 in the screw configuration. An interaction between the number of kneading discs and the 18 material throughput [MFR*NK] resulted in a significant reduction in the \bar{t} when increasing 19 the material throughput at a lower number of kneading discs (Fig. 7ii). Similarly, due to a 20 significant interaction between the number of kneading discs and screw speed [NK*RPM], 21 the \bar{t} reduced when either the number of kneading discs was reduced at a low screw speed or 22 screw speed was increased at a high number of kneading discs. Interestingly, an increasing 23 L/S, which lowered the torque level of the granulator, resulted in an increase in \bar{t} . Although 24 the effect of change in L/S on \bar{t} was not very dominant, an increased sluggishness of powder 25

at high L/S and elevated flow restriction at higher stagger angle interacted to raise the \bar{t} . The maximum \bar{t} (6.88 sec) was observed at a throughput of 25 kg/h, L/S of 8%, screw configuration with 12 kneading discs at 60° and screw speed of 500 rpm. The minimum \bar{t} (1.61 sec) was observed at a throughput of 10 kg/h, L/S of 8%, screw configuration with 4 kneading discs at 60° and screw speed of 900 rpm.

6

7

[Figure 7 about here.]

These results suggest that at a given process condition, the required residence time for 8 good mixing and high granulation yield can mainly be achieved by either choosing the \mathbf{a} 9 number of kneading discs in the screw configuration before starting the granulation process 10 or by changing the screw speed during the process. Also, the reduction in \bar{t} at low fill ratio 11 indicates a synergy between throughput force and the drag force in the mixed flow condition. 12 The lowering of torque level at a high L/S despite an increase in \bar{t} , i.e. more material inside 13 the granulator, confirms that the granulation liquid at high fill ratio had a lubricating effect 14 on the screw rotation without increasing the conveying rate. 15

16

¹⁷ 3.3. Mixing at different process conditions

18 3.3.1. Axial mixing

¹⁹ The axial mixing during the bulk flow inside the granulator was quantified as σ_{θ}^2 and Pe ²⁰ (Fig. 8). Increasing the screw speed resulted in an increase in σ_{θ}^2 , whereas a higher number of ²¹ kneading discs resulted in reduced σ_{θ}^2 . Visually this is reflected in a broadening of the RTD ²² with increasing screw speed (Fig. 4). The opposite effect on the RTD profile was observed ²³ with increasing number of kneading discs. Similar results were also obtained in our previous ²⁴ experimental and model-based study (Kumar et al., 2014, 2015). Besides, an interaction ²⁵ between material throughput and the screw speed was observed such that increasing the

screw speed at a high material throughput, i.e. lowering the fill ratio, resulted in a high σ_{θ}^2 1 Fig. 7i). However, keeping the material throughput at a high level when the screw speed (2 was reduced resulted in a lower σ_{θ}^2 compared to the condition with low throughput and low 3 crew speed. The largest σ_{θ}^2 (0.84) was observed at a throughput of 25 kg/h, L/S of 6%, \mathbf{S} 4 crew configuration with 4 kneading discs at 60° and screw speed of 900 rpm. In contrast, 5 the minimum σ_{θ}^2 (0.05) was observed at a throughput of 25 kg/h, L/S of 8%, screw config-6 uration with 12 kneading discs at 60° and screw speed of 500 rpm. 7

8

Beside σ_{θ}^2 quantifying mainly dispersive transport, the Pe, which is the ratio of convec-9 tive to dispersive transport in a system, was also directly influenced by the screw speed and 10 the number of kneading discs. An increase in the screw speed resulted in the dominance of 11 dispersive over convective transport phenomena, whereas the opposite effect was observed 12 for increasing the number of kneading discs. Also, similar to σ_{θ}^2 , the interaction between 13 material throughput and the screw speed resulted in a fast reduction in Pe, i.e. dispersive 14 transport increased when the screw speed was increased at a high throughput (Fig. 7i). This 15 similarity in the effect of different factors on σ_{θ}^2 and Pe suggests that the dispersive trans-16 port change was significantly larger than the convective transport change when variations 17 in the factors were introduced. At a low throughput, i.e. lower barrel filling, the observed 18 increase in dispersive transport was lower compared to a high material throughput. Due 19 to a significant interaction between stagger angle and screw speed, increasing screw speed 20 resulted in a rapid decline in Pe at higher stagger angle (60°) compared to lower stagger 21 angle (30°) . 22

23

The largest Pe (36.66) was observed at a throughput of 25 kg/h, L/S of 8%, screw configuration with 12 kneading discs at 60° and screw speed of 500 rpm. In contrast, the minimum Pe (0.55), which is lower than 1 indicating that the dispersive transport length was longer than the barrel size and exceeded the convective transport within the granulator
barrel was observed at a throughput of 25 kg/h, L/S of 6%, screw configuration with 4
kneading discs at 60° and screw speed of 900 rpm.

- 4
- 5

[Figure 8 about here.]

⁶ These observations suggest that the flow regime inside the granulator is controlled both by ⁷ the screw design and the process conditions. Due to the change in the hindrance to the ⁸ axial flow by the fully filled zones around the kneading discs, dispersive transport was less ⁹ efficient for a high number of kneading discs. Increasing the throughput force and drag force ¹⁰ by the increasing material throughput and screw speed simultaneously and consequently a ¹¹ low fill ratio led to an increase in the wall slippage resulting in more axial mixing in the TSG.

13 3.3.2. Solid-liquid mixing

The solid-liquid mixing in the bulk mixture was quantified as MI and its dynamics during 14 continuous granulation were quantified as frequency and amplitude of the mean moisture 15 profile of each run. According to the effect plot for the MI, the bulk mixing was most sig-16 nificantly reduced by the increase in material throughput (Fig. 10). In contrast, increasing 17 the number of kneading discs significantly increased the bulk mixing, which is reflected by 18 an increase in the mixing index. Also the throughput and the number of kneading discs 19 interacted [MFR*NK] significantly leading to an increase in the MI at a high throughput by 20 the increasing number of kneading discs (Fig. 7ii). Additionally, MI increased significantly 21 at a high L/S. The effect of a change in L/S also had significant interaction with the changes 22 in material throughput. An increase in the material throughput at low L/S resulted in a 23 lower MI than when a high L/S is applied. The effect of a change in the screw speed was 24 not significant on the MI but its interaction with the change in the number of kneading 25

discs resulted in a significant reduction in MI when the screw speed was increased at a high
number of kneading discs (Fig. 9i). The stagger angle did not affect the MI significantly.
The highest MI (0.39) was observed at a throughput of 25 kg/h, L/S of 8%, screw configuration with 12 kneading discs at 30° and screw speed of 500 rpm. In contrast, the minimum
MI (0.13) was observed at a throughput of 25 kg/h, L/S of 8%, screw configuration with 4
kneading discs at 60° and a screw speed of 900 rpm.

7

8

[Figure 9 about here.]

The effect plot for the frequency of mean moisture profile showed that, similar to the bulk 9 mixing, increasing the material throughput increased the frequency of the mean moisture 10 profile, i.e. indicating inferior solid-liquid mixing. The opposite effect occurred when the 11 number of kneading discs increased (Fig. 10). Also, an interaction between the through-12 put and number of kneading discs [MFR*NK] significantly influenced MI. An increase in 13 the material throughput at a high number of kneading discs resulted in an increase in the 14 frequency, thus more variations in the dynamic profile, which is opposite to the observa-15 tion for the bulk mixing as indicated by MI (Fig. 7ii). Additionally, due to a significant 16 interaction between the material throughput and stagger angle [MFR*SA], the frequency 17 of the mean moisture profile increased more rapidly by the increasing throughput at a high 18 stagger angle (60°) compared to a low stagger angle (30°) between kneading discs (Fig. 6iii). 19 Moreover, the interaction between the stagger angle and number of kneading discs in the 20 screw configuration at a low number of kneading discs resulted in an increase in frequency 21 when the stagger angle was increased. The opposite was observed when the stagger angle 22 was increased at a high number of kneading discs. The change in L/S, screw speed and 23 stagger angle had no significant effect on the variation frequency. 24

25

²⁶ The effect plot for the amplitude of the mean moisture profile also showed that similar

to the bulk mixing, the material throughput most significantly resulted in a decrease in the
degree of variation. However, an increase in the number of kneading discs, screw speed and
stagger angle equally resulted in an increase in the variation and, hence, a higher amplitude.
A high L/S caused a reduction in the extent of fluctuation, i.e. a lower amplitude. Due to
the interaction between the material throughput and L/S [MFR*LSR], an increase in the
L/S resulted in a lower amplitude when the material throughput was increased.

7

These results suggest that although a high material throughput and a high screw speed 8 are desired for process efficiency, their exclusive increase may cause inefficient solid-liquid 9 mixing which will result in an inferior granulation yield. Similarly, an increase in the num-10 ber of kneading discs should be considered to obtain good solid-liquid mixing by reducing 11 both the rate and degree of variations in the moisture content of the granules. Also, at 12 a higher L/S, bulk mixing is better and the degree of variation is less, indicating that a 13 proper amount of liquid addition is also required for good distribution of the liquid during 14 granulation. However, this improvement in solid-liquid mixing at high L/S also suggests an 15 active role of the pumping rate on the solid-liquid mixing. The effects of fluctuating pres-16 sure and variation in the fluid flow by the perstaltic pump can be better compensated by the 17 axial mixing as this variation period is much smaller (i.e., high frequency) compared to the 18 residence time of the material in the TSG. In contrast, granulation liquid inflow variations 19 at a low frequency cannot be easily compensated by the axial mixing due to the small resi-20 dence time of the material in the TSG. Similar significant variations in the moisture content 21 distribution were earlier observed by Vercruysse et al. (2013), and are thus critical to the 22 granulator design. 23

24

[Figure 10 about here.]

¹ 3.4. GSD at different process conditions

In order to understand the effect of each factor on the GSD, the sieved granules were 2 classified in three fractions (fine ($<150 \,\mu\text{m}$), vield ($150-1400 \,\mu\text{m}$) and oversized ($>1400 \,\mu\text{m}$)) 3 (Fig. 11). An increase in L/S and number of kneading discs resulted in a lower amount of 4 fines in the produced granules. On the other hand, an increase in the stagger angle and 5 screw speed led to more fines in the granules. Although material throughput independently 6 had no significant influence on the fines fraction, a significant interaction between material 7 throughput and the number of kneading discs [MFR*NK] resulted in a more rapid reduction 8 in the amount of fines with increasing number of kneading discs at high throughput (Fig. 7ii). 9 Also, the two factors with an opposite effect on fines i.e., the number of kneading discs and 10 the screw speed interacted significantly [NK*RPM]. The amount of fines at a low number 11 of kneading discs and a high screw speed was less, but the opposite was observed when 12 high screw speed was applied along with a high number of kneading discs (Fig. 9i). The 13 maximum amount of fines (55.0%) when the yield and oversized fractions were 42.0 and 3.0 %14 respectively) was observed at a throughput of 10 kg/h, L/S of 6%, screw configuration with 15 12 kneading discs at 30° and a screw speed of 900 rpm. In contrast, the smallest amount of 16 fines (4.9%) when the yield and oversized fractions were 41.7 and 53.4 % respectively) was 17 observed at a throughput of 25 kg/h, L/S of 8%, screw configuration with 12 kneading discs 18 at 30° and a screw speed of 500 rpm. 19

The yield fraction was most significantly influenced by the screw speed and the material throughput (Fig. 11). A higher screw speed resulted in an increase of the yield fraction, whereas increasing the material throughput resulted in a reduction of the yield fraction. Additionally, an increase in stagger angle resulted in a reduction in the yield fraction and the opposite was observed when L/S was increased. A strong interaction between the number of kneading discs and the screw speed resulted in a decrease in the yield fraction when the number of kneading discs was increased at a high screw speed (Fig. 9i). The yield frac-

tion increased when the number of kneading discs was increased at low screw speed. This 1 indicates that an increase in the mechanical shear beyond a certain extent is not favourable 2 to the granulation yield. Similarly, due to interaction between material throughput and 3 umber of kneading discs [MFR*NK], more yield fraction granules were produced when the n 4 number of kneading discs was increased at high throughput (Fig. 7ii). The change in yield 5 fraction was also influenced by the interaction of material throughput with stagger angle and 6 screw speed. Increasing the throughput at lower stagger angle resulted in a drastic reduction in the yield fraction (Fig. 6iii). Increasing the screw speed at a low throughput increased 8 the yield fraction more than operation at a high throughput (Fig. 7i). The highest yield 9 fraction (62.9% when the fines and oversized fractions were 18.8 and 18.2 % respectively) 10 was observed at a throughput of 25 kg/h, L/S of 6%, screw configuration with 12 kneading 11 discs at 60° and a screw speed of 500 rpm. In contrast, the lowest yield fraction (41.7%) 12 when the fines and oversized fractions were 4.9 and 53.4 % respectively) was observed at a 13 throughput of 25 kg/h, L/S of 8%, screw configuration with 12 kneading discs at 30° and a 14 screw speed of 500 rpm. 15

16

The effect plot for the oversized fraction shows that the additional liquid at a high L/S17 significantly increased the amount of oversized granules (Fig. 11). Similarly, increasing the 18 number of kneading discs and the material throughput also resulted in increased production 19 of oversized granules. This suggests ineffective mixing by the kneading discs despite an in-20 crease in the number of kneading discs. However, increasing stagger angle and screw speed 21 lowered the oversized fraction. An interaction between L/S and stagger angle resulted in a 22 rapid increase in the oversized fraction at low L/S when the stagger angle was reduced from 23 60° to 30° (Fig. 9ii). Additionally, the interaction between L/S and screw speed resulted 24 in a reduction in the oversized fraction at high L/S when the screw speed was increased 25 (Fig. 6ii). The highest fraction of oversized granules (53.4% when the fines and yield frac-26

tions were 4.9 and 41.7 % respectively) was observed at a throughput of 25 kg/h, L/S of
8%, screw configuration with 12 kneading discs at 30° and a screw speed of 500 rpm. The
smallest oversized granule fraction (3% when the fines and yield fractions were 55.0 and 42.0
% respectively) was observed at a throughput of 10 kg/h, L/S of 6%, screw configuration
with 12 kneading discs at 30° and a screw speed of 900 rpm.

6

[Figure 11 about here.]

7 3.5. Link between granulation time, mixing and yield

The purpose of granulation process design and optimisation is to maximize the process 8 efficiency, i.e. maximising the yield fraction. The results discussed so far (section 3.1 - 3.4) 9 suggest a correlation between the granulation time, mixing and the GSD. This was also 10 reflected by the PLS loadings plot (Fig. 12). The measured torque of the granulator drive 11 indicating power input to the system, Pe quantifying the axial mixing, MI quantifying the 12 solid-liquid mixing and \bar{t} quantifying average time spent by the material inside the granu-13 lator are positively correlated as can be seen in the loadings plot. On the other hand, all 14 the three size fractions (fine, yield and oversized granules) are located in different regions 15 suggesting that they have different important contributing factors. Moreover, the desired 16 condition for the responses such as a high residence time, a good axial as well as solid-liquid 17 mixing and resulting high yield fraction are favoured by different factors. Therefore, the 18 connections between different factors and responses requires detailed discussion. 19

- 20
- 21

[Figure 12 about here.]

As discussed in the introduction, due to the short residence time, the major challenge in twin-screw wet granulation is to achieve proper solid-liquid mixing in the shortest distance along the granulator screw to allow more time for other constitutive mechanisms of

granulation to shape the final distribution. For this purpose, kneading discs were used in 1 the TSG which improved solid-liquid mixing both by increasing the bulk mixing and reduc-2 ing the frequency of deviations in the moisture content of the granules (Fig. 10). A high 3 number of kneading discs also resulted in a relatively longer residence time. Despite this im-4 provement in mixing and time, increasing the number of kneading discs did not significantly 5 contribute to an increased yield fraction (Fig. 11). Additionally, increasing the L/S had no 6 significant contribution to increasing the desired yield fraction since most of the additional 7 liquid resulted in the formation of oversized granules. This evidently indicates that despite 8 the contribution of kneading discs in the solid-liquid mixing, the required quality of mixing 9 inside the TSG barrel was still not achieved. Since the highest torque level (12.4 N.m) was 10 also observed by the screw configuration with 12 kneading discs at 60° and a screw speed 11 of 500 rpm, further increase in the number of kneading discs will for sure increase the bulk 12 mixing, but on the other hand significantly limit the operational ranges of the process set-13 tings. Therefore, more efforts should be done to modify the TSG screw configuration both 14 using conventional (conveying and kneading elements) as well as non-conventional screw el-15 ements with modified geometries to improve the solid-liquid mixing (Vercruysse et al., 2015; 16 Sayin et al., 2015; Meier et al., 2015). Moreover, the liquid feeding system in the TSGs 17 should be improved to prevent variations in granulation liquid inflow with a period larger 18 than the mean residence time of the material as discussed earlier in section 3.3.2. Instead of 19 peristaltic pumps which are being used currently and cause pulsating flow, a constant flow 20 pump, such as dual piston pump, should be used. 21

22

Increasing the screw speed not only lowered the torque, allowing greater flexibility in choosing process settings but also most significantly increased the yield fraction of the granules despite smaller \bar{t} . However, mixing at a high screw speed was more dispersive as indicated by Pe than the bulk mixing indicated by MI (Fig. 8 and 10). Due to this, the fines fraction

increased as well. Increasing the material throughput (which will be the ultimate target in 1 industrial production) quickly changed the flow regime inside the granulator which conse-2 quently reduced the yield fraction. Moreover, beside reducing the axial mixing, an increasing 3 material throughput also reduced the bulk mixing which was mostly driven by the distribu-4 tive mixing by the kneading discs. Since the number of kneading discs significantly interacts 5 both with material throughput and screw speed, keeping the number of kneading discs at 6 fixed level, a balance between material throughput and screw speed should be strived for а 7 in order to achieve the required granulation time, axial mixing and solid-liquid mixing for 8 high granulation yield. Moreover, although increasing stagger angle had a negative effect 9 on yield fraction, since increasing the stagger angle and screw speed simultaneously, lowered 10 both fines and the oversized fraction in the granules produced, the higher stagger angle (60°) 11 should be used in the screw configuration. 12

13

Additionally, considering the inability of experimental studies in visualising and measur-14 ing the effects of screw configuration and elements on powder flow, mixing and granulation 15 rate processes at particle-scale, further studies based on application of mechanistic mod-16 elling tools, such as discrete element simulations and population balance modelling should 17 be performed to improve the understanding of the governing constitutive mechanisms of the 18 twin-screw wet granulation process. These mechanistic tools can also be used for exploring 19 the effect of changes in the granulator screw design and the liquid addition strategy for an 20 improvement in the liquid distribution and consequently obtaining a higher wet granulation 21 vield. 22

23

¹ 4. Conclusions

NIR chemical imaging was shown to be an adequate tool for simultaneous characteri-2 sation of the material flow, axial mixing and bulk mixing analysis during twin-screw gran-3 ulation. This also allowed investigating the effect of RTD and solid-liquid mixing on the 4 esulting GSD to better understand the overall influence on different flow and mixing condi-5 tions. According to the study, an interaction between screw speed, the material throughput, 6 liquid-to-solid ratio, number of kneading discs and stagger angle led to variation in the res-7 idence time as well as mixing capacity. At a high screw speed, despite high axial mixing 8 leading to reduction of the oversized (>1400 μ m) fraction and a higher yield fraction, a 9 low residence time resulted in increase in the fine ($<150 \mu m$) fraction. Similarly, increasing 10 L/S led to more oversized granules, which increased further at higher throughput. This 11 indicated insufficient solid-liquid mixing capacity of the current kneading discs which is ulti-12 mately required for good granulation performance. Similarly, at high throughput improper 13 solid-liquid mixing resulted in more oversized particles. Thus, a balance between material 14 throughput and screw speed should be looked for to achieve the required granulation time 15 and solid-liquid mixing for high granulation yield. Additionally, more efforts should be done 16 both to modify the screw configuration as well as geometry of the mixing elements to improve 17 the mixing capacity of the TSG. The results from this experimental study improved the un-18 derstanding regarding the interplay between granulation time, the axial and the solid-liquid 19 mixing responsible for the granulation yield. However, only empirical qualitative insight is 20 gained, not detailed quantitative insight. Therefore, application of mechanistic modelling 21 tools, such as discrete element simulations and population balance modelling, needs to be 22 further explored for further detailed investigation of material flow and mixing and their 23 impact on granulation yield during twin-screw granulation. 24

1 Acknowledgements

- ² Financial support for this research from the BOF (Bijzonder Onderzoeksfonds Univer-
- ³ siteit Gent, Research Fund Ghent University) is gratefully acknowledged.

References 1

- Cooley, J. W., Tukey, J. W., 1965. An algorithm for the machine calculation of complex Fourier series. Math. 2 Comput. 19, 297-301.
- Dhenge, R. M., Cartwright, J. J., Doughty, D. G., Hounslow, M. J., Salman, A. D., 2011. Twin screw wet 4 granulation: Effect of powder feed rate. Adv. Powder Technol. 22 (2), 162 – 166. 5
- Dhenge, R. M., Fyles, R. S., Cartwright, J. J., Doughty, D. G., Hounslow, M. J., Salman, A. D., 2010. 6
- Twin screw wet granulation: Granule properties. Chem. Eng. J. 164 (2-3), 322–329, Pharmaceutical 7
- Granulation and Processing. 8
- El Hagrasy, A., Hennenkamp, J., Burke, M., Cartwright, J., Litster, J., 2013. Twin screw wet granulation: 9
- Influence of formulation parameters on granule properties and growth behavior. Powder Technol. 238, 10 108 - 115.11
- Eriksson, L., Johansson, E., Kettaneh-Wold, N., Wikström, C., Wold, S., 2000. Design of Experiments 12 -Principles and Applications. Umetrics Academy. 13
- Fogler, H., 2006. Elements Of Chemical Reaction Engineering. Pearson international edition. Prentice Hall 14 Professional Technical Reference. 15
- Guida, A., Nienow, A. W., Barigou, M., 2010. Shannon entropy for local and global description of mixing 16 by lagrangian particle tracking. Chem. Eng. Sci. 65 (10), 2865–2883. 17
- Kumar, A., Gernaey, K. V., De Beer, T., Nopens, I., 2013. Model-based analysis of high shear wet granulation 18
- from batch to continuous processes in pharmaceutical production a critical review. Eur. J. Pharm. 19 Biopharm. 85 (3, Part B), 814 – 832. 20
- Kumar, A., Vercruysse, J., Toiviainen, M., Panouillot, P.-E., Juuti, M., Vanhoorne, V., Vervaet, C., Remon, 21 J. P., Gernaey, K. V., De Beer, T., Nopens, I., 2014. Mixing and transport during pharmaceutical twin-
- screw wet granulation: Experimental analysis via chemical imaging. Eur. J. Pharm. Biopharm. 87 (2), 23
- 279 289.24

22

- Kumar, A., Vercruysse, J., Vanhoorne, V., Toiviainen, M., Panouillot, P.-E., Juuti, M., Vervaet, C., Remon, 25
- J. P., Gernaey, K. V., De Beer, T., Nopens, I., 2015. Conceptual framework for model-based analysis of 26 residence time distribution in twin-screw granulation. Eur. J. Pharm. Sci. 71 (0), 25 - 34. 27
- Lee, K. T., Ingram, A., Rowson, N. A., Aug. 2012. Twin screw wet granulation: the study of a continuous 28

- 1 twin screw granulator using Positron Emission Particle Tracking (PEPT) technique. Eur. J. Pharm.
- ² Biopharm. 81 (3), 666–73.
- Li, H., Thompson, M., O'Donnell, K., 2014. Understanding wet granulation in the kneading block of twin
 screw extruders. Chem. Eng. Sci. 113 (0), 11 21.
- Meier, R., Thommes, M., Rasenack, N., Krumme, M., Moll, K.-P., Kleinebudde, P., 2015. Simplified formulations with high drug loads for continuous twin-screw granulation. Int. J. Pharm. (0), -.
- 7 Poechlauer, P., Manley, J., Broxterman, R., Gregertsen, B., Ridemark, M., 2012. Continuous processing in
- 8 the manufacture of active pharmaceutical ingredients and finished dosage forms: An industry perspective.
- 9 Org. Process Res. Dev. 16 (10), 1586–1590.
- 10 Sayin, R., Hagrasy, A. E., Litster, J., 2015. Distributive mixing elements: Towards improved granule at-
- tributes from a twin screw granulation process. Chemical Engineering Science 125 (0), 165 175, phar-
- 12 maceutical Particles and Processing.
- Van Melkebeke, B., Vervaet, C., Remon, J. P., 2008. Validation of a continuous granulation process using a
 twin-screw extruder. Int. J. Pharm. 356 (1-2), 224–230.
- ¹⁵ Vercruysse, J., Burggraeve, A., Fonteyne, M., Cappuyns, P., Delaet, U., Assche, I. V., Beer, T. D., Remon,
- J., Vervaet, C., 2015. Impact of screw configuration on the particle size distribution of granules produced
- by twin screw granulation. Int. J. Pharm. 479 (1), 171 180.
- 18 Vercruysse, J., Toiviainen, M., Fonteyne, M., Helkimo, N., Ketolainen, J., Juuti, M., Delaet, U., Assche,
- 19 I. V., Remon, J. P., Vervaet, C., De Beer, T., 2013. Visualization and understanding of the granulation
- ²⁰ liquid mixing and distribution during continuous twin screw granulation using NIR chemical imaging.
- ²¹ Eur. J. Pharm. Biopharm. 86 (3), 383–392.

¹ List of Figures

2	1	Screw configuration with 12 kneading discs (2 blocks) used in the twin-screw	
3		granulator during the study.	33
4	2	Representation of an active pharmaceutical ingredient (API)-map and a mois-	
5		ture map, the corresponding mean temporal profile, which were translated	
6		into the corresponding residence time distribution and moisture distribution	
7		for the twin screw granulator at fixed material throughput (25 kg/h), number	
8		of kneading discs (6), stagger angle (60°) and different screw speeds	34
9	3	The FFT algorithm was used to remove noise from the mean moisture pro-	
10		files, allowing the identification of the most dominant frequency band and	
11		corresponding amplitude	35
12	4	The age distribution (left) and normalised RTD (right) profiles with a shaded	
13		region denoting the standard deviation at different screw speed (500, 900	
14		RPM) during various experiments (ID) using twin screw granulation [SA:	
15		stagger angle (°), NK: number of kneading discs (-), MFR: material through-	
16		put (kg/h), LSR: liquid-solid ratio (%), T 1: mean residence time at 500	
17		RPM (s), T 2: mean residence time at 900 RPM (s)]	36
18	5	Effects plots showing predicted changes in the measured torque [N=42; DF=32;	
19		R2=0.95] and mean residence time [N=41; DF=30; R2=0.97] when factors,	
20		number of kneading discs (NK) [4, 6, 12], screw speed (RPM) [500-900 rpm],	
21		throughput (MFR) [10-25 kg/h], liquid-to-solid ratio (LSR) [6-8%] and stag-	
22		ger angle (SA) [30-60°], vary from the low to the high level, while keeping the	
23		other factors at their center point value (confidence level=0.95)	37
24	6	Predicted changes in the responses due to interaction (i) between the liquid-	
25		to-solid ratio (L/S) and material throughput [MFR*LSR], (ii) between the	
26		liquid-to-solid ratio (L/S) and screw speed [LSR*RPM] and (iii) between the	
27		material throughput and stagger angle [MFR*SA] in the screw configuration.	38
28	7	Predicted changes in the responses due to interaction (a) between the material	
29		throughput and screw speed [MFR*RPM] and (b) between material through-	
30		put and number of kneading discs [MFR*NK] in the screw configuration	39
31	8	Effects plots showing predicted changes in the mean centered variance [N=46;	
32		DF=39; $R2=0.87$] and Péclet number [N=43; $DF=35$; $R2=0.84$] when factors,	
33		number of kneading discs (NK) [4, 6, 12], screw speed (RPM) [500-900 rpm],	
34		throughput (MFR) [10-25 kg/h], liquid-to-solid ratio (LSR) [6-8%] and stag-	
35		ger angle (SA) [30-60°], vary from a low to a high level, while keeping the	
36		other factors at their center point value (confidence level=0.95)	40
37	9	Predicted changes in the responses due to interaction (i) between number	
38		of kneading discs and screw speed [NK*RPM], and (i) between liquid-to-	
39		solid ratio and stagger angle between kneading discs [LSR*SA] in the screw	
40		configuration.	41

1	10	Effects plots showing predicted changes in the Shannon entropy based mixing	
2		index (MI) $[N=43; DF=34; R2=0.80]$, frequency $[N=41; DF=32; R2=0.84]$	
3		and amplitude [N=45; DF=38; R2=0.88] of the mean moisture profiles when	
4		factors, number of kneading discs (NK) [4, 6, 12], screw speed (RPM) [500-	
5		900 rpm], throughput (MFR) [10-25 kg/h], liquid-to-solid ratio (LSR) [$6-8\%$]	
6		and stagger angle (SA) $[30-60^\circ]$, vary from a low to a high level, while keeping	
7		the other factors at their center point value (confidence level= 0.95)	42
8	11	Effects plots showing predicted changes in the fines $(>150 \ \mu m)$ [N=49; DF=39;	
9		R2=0.93], yield [150-1400 µm] [N=38; DF=28; R2=0.84] and oversized (>1400)	
10		μ m) [N=47; DF=38; R2=0.92] fractions of the resulting GSD produced when	
11		factors, number of kneading discs (NK) [4, 6, 12], screw speed (RPM) [500-	
12		900 rpm], throughput (MFR) [10-25 kg/h], liquid-to-solid ratio (LSR) [$6-8\%$]	
13		and stagger angle (SA) $[30-60^\circ]$, vary from a low to a high level, while keeping	
14		the other factors at their center point value (confidence level= 0.95)	43
15	12	Scatter plot with PLS loadings of the two first model dimensions	44

Figure 1: Screw configuration with 12 kneading discs (2 blocks) used in the twin-screw granulator during the study.

Figure 2: Representation of an active pharmaceutical ingredient (API)-map and a moisture map, the corresponding mean temporal profile, which were translated into the corresponding residence time distribution and moisture distribution for the twin screw granulator at fixed material throughput (25 kg/h), number of kneading discs (6), stagger angle (60°) and different screw speeds.

Figure 3: The FFT algorithm was used to remove noise from the mean moisture profiles, allowing the identification of the most dominant frequency band and corresponding amplitude.

e(t) plot for mean API concentration	ID	MFR	NK	SA	LSR	т1	Т 2	Normalised RTD, $e(\theta)$ plots
- 500 900	1	10	4	30	6	4.4	2.3	- 500 900
				20	_			
	2	10	4	30	8	4.1	2.7	
	3	10	4	60	6	3.5	2.1	
from from	4	10	4	60	8	3.8	1.7	
(Marine Contraction of the Contr	5	10	6	30	6	4.8	4.2	At the second se
	6	10	6	30	8	5.2	4.2	
	7	10	6	60	6	3.9	2.4	
1	8	10	6	60	8	4.7	3.3	
	9	10	12	30	6	5.0	2.7	
	10	10	12	30	8	4.8	2.4	
	11	10	12	60	6	2.5	2.3	hub the second
	12	10	12	60	8	3.6	2.5	and the second sec
	13	25	4	30	6	4.3	2.4	
	14	25	4	30	8	4.0	2.1	
	15	25	4	60	6	3.7	1.9	
	16	25	4	60	8	4.5	2.1	
	17	25	6	30	6	4.4	2.4	A second se
	18	25	6	30	8	4.5	2.3	
Printer Contraction	19	25	6	60	6	5.2	2.1	and the second s
	20	25	6	60	8	5.2	2.2	- And
	21	25	12	30	6	4.7	2.4	
	22	25	12	30	8	5.3	2.1	A LUD AND THE AND A LUD AND A
	23	25	12	60	6	5.5	1.6	
	24	25	12	60	8	6.5	1.9	
0 2 4 6 8 10 12 14 time (sec)							0.	0 0.5 1.0 1.5 2.0

Figure 4: The age distribution (left) and normalised RTD (right) profiles with a shaded region denoting the standard deviation at different screw speed (500, 900 RPM) during various experiments (ID) using twin screw granulation [SA: stagger angle (°), NK: number of kneading discs (-), MFR: material throughput (kg/h), LSR: liquid-solid ratio (%), T 1: mean residence time at 500 RPM (s), T 2: mean residence time at 900 RPM (s)].

Figure 5: Effects plots showing predicted changes in the measured torque [N=42; DF=32; R2=0.95] and mean residence time [N=41; DF=30; R2=0.97] when factors, number of kneading discs (NK) [4, 6, 12], screw speed (RPM) [500-900 rpm], throughput (MFR) [10-25 kg/h], liquid-to-solid ratio (LSR) [6-8%] and stagger angle (SA) [30-60°], vary from the low to the high level, while keeping the other factors at their center point value (confidence level=0.95).

(iii) Predicted changes in the measured torque, yield fraction (>150 μ m to <1400 μ m) of granules and frequency of the mean moisture profile.

Figure 6: Predicted changes in the responses due to interaction (i) between the liquid-to-solid ratio (L/S) and material throughput [MFR*LSR], (ii) between the liquid-to-solid ratio (L/S) and screw speed [LSR*RPM] and (iii) between the material throughput and stagger angle [MFR*SA] in the screw configuration.

(i) Predicted changes in the measured torque, mean residence time, Pe and yield fraction (>150 μ m to <1400 μ m) of granules, mixing index (MI) and frequency of the mean moisture profiles.

(ii) Predicted changes in the mean residence time, and fine ($<150 \ \mu m$) and yield fractions ($>150 \ \mu m$ to $<1400 \ \mu m$) of granules.

Figure 7: Predicted changes in the responses due to interaction (a) between the material throughput and screw speed [MFR*RPM] and (b) between material throughput and number of kneading discs [MFR*NK] in the screw configuration.

Figure 8: Effects plots showing predicted changes in the mean centered variance [N=46; DF=39; R2=0.87] and Péclet number [N=43; DF=35; R2=0.84] when factors, number of kneading discs (NK) [4, 6, 12], screw speed (RPM) [500-900 rpm], throughput (MFR) [10-25 kg/h], liquid-to-solid ratio (LSR) [6-8%] and stagger angle (SA) [30-60°], vary from a low to a high level, while keeping the other factors at their center point value (confidence level=0.95).

(i) Predicted changes in the mean residence time, and fine ($<150 \ \mu m$) and yield fractions ($>150 \ \mu m$ to $<1400 \ \mu m$) of granules.

(ii) Predicted changes in the mean residence time, and oversized granule fraction (>1400 μm).

Figure 9: Predicted changes in the responses due to interaction (i) between number of kneading discs and screw speed [NK*RPM], and (i) between liquid-to-solid ratio and stagger angle between kneading discs [LSR*SA] in the screw configuration.

Figure 10: Effects plots showing predicted changes in the Shannon entropy based mixing index (MI) [N=43; DF=34; R2=0.80], frequency [N=41; DF=32; R2=0.84] and amplitude [N=45; DF=38; R2=0.88] of the mean moisture profiles when factors, number of kneading discs (NK) [4, 6, 12], screw speed (RPM) [500-900 rpm], throughput (MFR) [10-25 kg/h], liquid-to-solid ratio (LSR) [6-8%] and stagger angle (SA) [30-60°], vary from a low to a high level, while keeping the other factors at their center point value (confidence level=0.95).

Figure 11: Effects plots showing predicted changes in the fines (>150 μ m) [N=49; DF=39; R2=0.93], yield [150-1400 μ m] [N=38; DF=28; R2=0.84] and oversized (>1400 μ m) [N=47; DF=38; R2=0.92] fractions of the resulting GSD produced when factors, number of kneading discs (NK) [4, 6, 12], screw speed (RPM) [500-900 rpm], throughput (MFR) [10-25 kg/h], liquid-to-solid ratio (LSR) [6-8%] and stagger angle (SA) [30-60°], vary from a low to a high level, while keeping the other factors at their center point value (confidence level=0.95).

Figure 12: Scatter plot with PLS loadings of the two first model dimensions