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Abstract

The manufacturing of pharmaceutical dosage forms, which has traditionally been a batch-wise process,

is now also transformed into a series of continuous operations. Some operations such as tabletting and

milling are already performed in continuous mode, while the adaptation towards a complete continuous

production line is still hampered by complex steps such as granulation and drying which are considered

to be too inflexible to handle potential product change-overs. Granulation is necessary in order to achieve

good flowability properties and better control of drug content uniformity. This paper reviews modelling and

supporting measurement tools for the high shear wet granulation (HSWG) process, which is an important

granulation technique due to the inherent benefits and the suitability of this unit operation for the desired

switch to continuous mode. For gaining improved insight of the complete system, particle-level mechanisms

are required to be better understood, and linked with an appropriate meso- or macro-scale model. A brief

review has been provided to understand the mechanisms of the granulation process at micro or particle-level

such as those involving wetting and nucleation, aggregation, breakage and consolidation. Further, population

balance modelling (PBM) and the discrete element method (DEM), which are the current state-of-the-art

methods for granulation modelling at micro- to meso-scale, are discussed. The DEM approach has a major

role to play in future research as it bridges the gap between micro- and meso-scales. Furthermore, interesting

developments in the measurement technologies are discussed with a focus towards inline measurements of

the granulation process to obtain experimental data which are required for developing good models. Based

on the current state of the developments, the review focuses on the twin screw granulator as a device for
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continuous HSWG and attempts to critically evaluate the current process. As a result, a set of open research

questions are identified. These questions need to be answered in the future in order to fill the knowledge gap

that currently exists both at micro- and macro-scale, and which is currently limiting the further development

of the process to its full potential in pharmaceutical applications.

Keywords: high shear wet granulation, process modelling, calibration, measurement techniques,

twin-screw granulator

1. Introduction1

Granulation is a size enlargement process to form granules with controlled properties, starting from a2

particulate feed and a liquid as raw materials. It is a key process adopted in a range of industries for3

production of pharmaceuticals, detergents, agricultural and food products, agro-chemicals, enzymes etc.4

Granulation is mainly performed to improve the flowability of powders, to reduce dustiness and co-mixing of5

materials which will otherwise segregate or form a cake [1, 2]. The major granule properties such as granule6

size distribution (GSD) and porosity, are driven by the rate of various macroscopic mechanisms during the7

granulation process, e.g. nucleation, aggregation, layering, breakage, consolidation [1–3].8

Despite the challenges involved, continuous processing has become preferable for all major industries9

in the past decades due to the fact that continuous operation usually comes with several benefits for the10

process (Table 1). However, the pharmaceutical industry is a clear exception, and has for many years11

mainly relied on conventional batch manufacturing, largely due to a rigid regulatory framework and due to12

uncertainty in industry about the attitude of the regulators towards more continuous production processes.13

Moreover, the conventional pharmaceutical quality control systems are based on off-line analysis in analytical14

laboratories, which is in sharp contrast to the real-time in-process analysis methods which are needed for15

continuous processing. Continuous real-time quality monitoring and control is indeed indispensable for16

efficient continuous production.17

The introduction of the process analytical technology (PAT) guidance [4] was an important milestone18

for the pharmaceutical industry, since it is one of the first documents published by regulatory authori-19

ties promoting a new pharmaceutical production model based on the Quality by Design (QbD) concept.20

The QbD concept relies on a science- and risk- based holistic development of processes and products such21

that, quality cannot be tested into products; it should be built-in or should be by design. In addition to the22

new concepts considered by the United States Food and Drug Administration (US FDA), the use of quality23

risk management principles and the application of an appropriate pharmaceutical quality system, as defined24

within the International Conference on Harmonization (ICH) documents Q8, Q9 and Q10 [5–7] provided25

the platform for establishing a new release decision-making strategy for marketed products, i.e. the Real26
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Figure 1: Schematic diagram of industrial granulation systems operated in a continuous production line [10].

Time Release Testing (RTRT) strategy [8]. Furthermore, ICH published a more recent and extensive guid-1

ance for harmonising the scientific and technical principles related to the description and justification of2

the drug development and complete manufacturing process [9]. All these developments and publications3

have reduced the regulatory uncertainty, and opened new and exciting possibilities for innovation in phar-4

maceutical manufacturing, resulting in significant efforts for designing new and more efficient production5

strategies. Continuous manufacturing of solid dosage pharmaceutical products is in line with the efforts aim-6

ing at improving product quality, reducing manufacturing cost, and essentially providing safer products to7

the patients. The one-in-one-out principle for the raw materials in this production scheme leads to reduced8

cycle times and improved process throughput. Schaber et al. [11] showed that continuous processing has a9

clear economic advantage over batch processing. Cervera-Padrell et al. [12] demonstrated that the switch10

from batch to continuous processing for organic synthesis of small molecules resulted in a reduction of the11

process mass intensity by about 50%, thus resulting in a considerably greener continuous production process.12

The desired paradigm shift from batch to continuous mode at production scale in the pharmaceutical sector13

requires a reliable continuous granulation process. An example of a production line used for the continuous14

manufacturing of tablets is shown in Figure 1 [10]. Some of the process steps in the pharmaceutical pro-15

duction process are in fact continuous as such (e.g. milling, tabletting), but the production of granules is16

typically performed using inherent batch unit operations. Various granulation techniques which are widely17

used in the pharmaceutical industry are summarised in Table 2.18

Wet granulation is a commonly used unit operation for solid dosage form manufacturing which is attributed19

to the more uniform distribution of formulation ingredients that is obtained. Various wet granulation20

techniques including fluidised-bed aggregation and extrusion have been developed and used (Figure 2).21

However, compared to other granulation methods, the high-shear wet granulation (HSWG) methods of-22

fer several advantages as listed in Table 3. As the wetting, agglomeration, consolidation and discharge are23
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Figure 2: Overview of types of equipment used in wet granulation

quickly performed in the same equipment HSWG is also promising with respect to switching towards contin-1

uous processing. Despite these advantages, there are some challenges compared with low-shear granulation2

processes: e.g. HSWG can produce less compressible granules due to over-wetting and a narrow range of3

operating conditions, which demands for strong control over the process. Vervaet and Remon [13] reviewed4

the continuous granulation techniques extensively, and due to other inherent benefits in terms of ease in5

continuous operation, operations-integration and scale-up possibility, the high-shear twin-screw granulation6

system has received most attention in the last decades. To date these systems are even commercially avail-7

able as continuous twin-screw granulators (TSG), e.g. the ConsiGma™systems by GEA Pharma Systems8

nv., Wommelgem, Belgium [14] and Pharma 16 TSG by Thermo Fisher Scientific, Karlsruhe, Germany [15].9

Nevertheless, there is a clear need to acquire more fundamental understanding of the continuous gran-10

ulation processes. Improved process understanding can then result in improvements in equipment design,11

process control and processing efficiency. Application of computational process modelling tools is becoming12

more common and now playing a crucial role in efforts to gain knowledge about these processes. Some recent13

reviews have underlined their diverse application in the pharmaceutical industry [16, 17] , while validation14

of these models also requires reliable measurement tools to compare model predictions with the measured15

behaviour of the system. This review and discussion is therefore dedicated to the modelling of HSWG16

processes as well as measurements required for the model calibration/validation (not quality measurements17

in general). Focus is hereby on the existing intention of the pharmaceutical sector to move from batch18

to continuous production (granulation). Section 2 summarises the current state of the art of high-shear19

batch granulation specific modelling approaches and process measurement techniques. Next to the review,20

a critical discussion is provided in section 3 highlighting current knowledge gaps and potentially interesting21

new research directions of modelling and measurement tools for the efficient adoption of continuous TSG22
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Figure 3: Knowledge development framework using modelling and measurement tools

systems.1

2. Current modelling and related measurement tools for HSWG2

It is generally accepted that the availability of mathematical process model(s) and suitable measure-3

ment device(s) for a pharmaceutical process when successfully interlinked (i.e. performing proper model4

calibration and validation), can lead to functional and robust knowledge based control of process and prod-5

uct quality [16]. Unfortunately, many of the parameters used in HSWG models are difficult to measure in6

the field, yet they have a substantial impact on the performance of the granulation models. Most of the7

granulation modelling based analyses are often understood to be carried out under default parameter values8

or best-guessed values. This is mainly due to either difficulties in experimental data collection or lack of9

suitable measurement tool for the simulation model calibration and validation. it is therefore very relevant10

to discuss potential options among available mathematical modelling practices and related measurement11

technologies. Not properly calibrated and validated models later when tested result in unrealistic estimates12

of the impact of any change in process condition. Thus, calibration and validation of simulation models13

are crucial steps in assessing their value in granulation process modelling. Adjustments or tuning in model14

parameters through calibration are necessary to improve the ability of granulation models to replicate pro-15

cess measured conditions and properly reflect the impact of any change in it (Figure 3). This section of16

the review comprises the currently reported developments in modelling practices and related measurement17

tools of the batch HSWG in order to illustrate the degree to which this potential has been exploited thus18

far. This overview then allows identifying potential gaps and developing a list of unexplored possibilities for19

facing the challenges (Table 1) inherent to the continuous form of HSWG.20
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2.1. Mathematical modelling of HSWG1

The first step in development of first-principle models for the granulation processes is to understand the2

mechanisms of the granulation process at micro or particle-level. If the particle-level mechanisms are not3

understood to a certain extent, an appropriate modelling of the complete system at meso- or macro-scale4

does not have a fair chance of success. The particle-level mechanisms for some of the key processes that may5

take place during HSWG have been reviewed by Iveson et al. [18] and respective models are summarised6

in Table 4. As not all particle-level mechanisms are well understood (e.g. wetting and nucleation), some7

empirical expressions are included in the model (leading to so-called semi-empirical or "grey box" models)8

in order to allow simulation of the granulation system.9

Although the underlying mechanisms of the granulation process are still being investigated, especially in10

case of TSG where such detailed knowledge is not yet established [3], it is well motivated to model the11

system at meso- or macro-scale such as to exploit the benefits of process system engineering (PSE) methods12

and tools [16]. PSE tools rely on domain knowledge and mathematical and experimental techniques to build13

computer models which relate the change at a molecular level to macro-scale system performance in order14

to develop and optimise the system. The necessity of a multi-scale approach towards granulation process15

optimisation, monitoring and control has been documented in detail by Cameron and Wang [19].16

Several approaches are adopted for macro-scale modelling of granulation processes as overviewed in ta-17

ble 5. Two main modelling approaches mostly used for HSWG processes are (1) population balance mod-18

elling (PBM); and (2) the discrete element method (DEM). The aim of both approaches is to model the19

mechanisms (discussed in Table 4) and predict the resulting steady-state distribution characteristics such20

as GSD, moisture content etc. Some hybrid approaches are discussed as well to demonstrate the benefit of21

linking one modelling approach to another one.22

2.1.1. Population balance modelling23

A PBM provides a statistical description of a system of particles that are undergoing size change mecha-24

nisms leading to size increase and/or reduction. They have numerous applications in the engineering sciences25

apart from granulation, for example in the field of crystallisation, coagulation of aerosols, polymerisation,26

and cell growth to name but a few. The balance is solved to obtain statistical properties, such as the GSD.27

In a HSWG process, assuming that the aggregation depends only on particle size, where size is a continuous28

variable, the general form of a population balance equation (PBE) for a well-mixed system is given as [20]:29

∂n

∂t
(x, t) + ∂

∂x

[
n
dx

dt

]
(x, t) = <birth(x, t)−<death(x, t) (1)

where ∂
∂x

[
ndxdt

]
(x, t) represents the continuous growth or attrition loss along the internal coordinate of the30

particle diameter, <birth and <death represent the net formation and depletion rates of particles resulting from31
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all discrete granulation mechanisms such as aggregation and breakage. Including the effects of aggregation1

and breakage explicitly, the PBM becomes [21]:2

∂n

∂t
(x, t) + ∂

∂x

[
n
dx

dt

]
(x, t) =1

2

x∫
0

β(x− y, y)n(x− y, t)n(y, t)dy − n(x, t)
∞∫

0

β(x, y)n(y, t)dy

+
∞∫

0

Kbreak(y)ζbreak(y, x− y)n(y, t)dy −Kbreak(x)n(x, t) (2)

Equation 2 is an integro-partial differential equation, and an analytical solution can only be found for3

simple β(x, y) and Kbreak(x, y) functions. However, these generally correspond to non-physical cases. Thus,4

numerical approaches are required for more complex functions describing real-life systems.5

Population balance model development for a continuous system6

Granulation operations in the pharmaceutical industry are mostly performed as batch processes and7

therefore, most modelling studies with respect to pharmaceutical granulation have focused on batch pro-8

cesses. In equation 2, there is no spatial coordinate included in the model because a well-mixed system is9

assumed (i.e. no spatial variation). However, the modelling of a continuous system involves both internal10

and external (spatial) coordinates, which are specified in the PBE to capture this spatial variation [22], as11

given in equation 3:12

∂

∂t
n(x, z, t) + ∂

∂x

[
n
dx

dt

]
(x, z, t) =1

2

x∫
0

β(x− y, y)n(x− y, z, t)n(y, z, t)dy

− n(x, z, t)
∞∫

0

β(x, y)n(y, z, t)dy +
∞∫

0

Kbreak(y)ζbreak(y, x− y)n(y, z, t)dy

−Kbreak(x)n(x, z, t)− ∂

∂z
[Żn(x, z, t)] (3)

where, the spatial velocity in the external coordinate is defined as Ż = dz/dt. Thus, a 1-D continuous PBE13

provides a description of the evolution of one evolving property of particles and the conservation of their14

internal attributes. Heinrich et al. [23] discussed the modelling of continuous fluidized-bed spray granulation15

with recycle, which predicts the occurrence of both oscillatory steady-states as well as unique steady states16

in these processes. The spatio-temporal variation has also been identified in batch-scale granulators as17

the intensity of different granulation mechanisms varies between specific zones of the equipment based18

on the conditions prevailing in a granulator [24–27]. The particle flow pattern and their visit frequency19

through the specific granulator zone during the operation has been defined numerically with the use of20

computational fluid dynamics ( CFD) and DEM. For instance, a CFD-PBM approach was used in the case21

of diluted particles/droplets dispersed in a fluid [24, 25]. The DEM can also be combined with the PBM22
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when a dense flow of particles is considered [26, 27]. Freireich et al. used this technique for large particles1

blended in a dual-axis mixer in the context of coating applications [26]. The domain was separated into2

two compartments to represent the spray zone and the rest of the particle bed. Only layering granulation3

and particle coating were investigated. Particle aggregation and breakage mechanisms were not considered4

in the study. In case of HSWG, the PBM-DEM approach is most suitable. However, no such study was5

presented for HSWG until recently when Bouffard et al. demonstrated a PBM-DEM hybrid model where the6

particle flow was accounted for in simulation by a compartmental model, which was implemented in the PBM7

considering particle aggregation or breakage mechanisms [28]. Each compartment was considered perfectly8

mixed and associated with one or more specific granulation mechanisms. Although less work has been done9

on continuous granulation for pharmaceuticals, a clear gain of knowledge has been obtained in other chemical10

industries by adopting such continuous PBE models [29]. In specific, processes such as crystallization and11

flocculation where the continuous operation is more well-known, PBEs are used extensively [30–34].12

Multi-dimensional Population Balance Models13

The accurate modelling of pharmaceutical granulation processes involving a multi-component system14

requires the consideration of multi-dimensional PBEs. Along with granule size, granulation liquid content15

has a major effect on granule growth. Several studies demonstrate that the amount of liquid directly16

correlates with the rate of granule growth, due to a larger availability of surface-wet granules with increased17

liquid dosage [35, 36]. Similarly, granule porosity is an essential parameter having significant effect on18

granule growth and breakage behaviour, deformability and strength [36]. Consequently, multi-dimensional19

PBEs incorporating the effect of such parameters are now frequently being developed [21, 37–41]. A multi-20

dimensional PBE can be formulated as:21

∂

∂t
n(m, ε,w, x, t)+ ∂

∂m

[
n
dm

dt

]
(m, ε,w, x, t) + ∂

∂ε

[
n
dε

dt

]
(m, ε,w, x, t)

+ ∂

∂w

[
n
dw

dt

]
(m, ε,w, x, t) + ∂

∂x

[
n
dx

dt

]
(m, ε,w, x, t) = <birth −<death (4)

In recent years, the number and types of multi-dimensional PBEs applied to granulation systems has consid-22

erably increased. However, care must be taken to model only the primary mechanisms in multi-dimensional23

PBEs, as the model may become excessively complex and numerical errors can increase prohibitively leading24

to inaccurate predictions. A hybrid PBE can be formulated to tackle this challenge. E.g. in an aggregation25

only model, a two-dimensional population balance can be presented where collision is dependent only on26

particle size but aggregation is dependent on both particle size and surface wetness (or stickiness). Similarly,27

Biggs et al. [42] used a pseudo two-dimensional (2-D) PBM that allowed composition on a size-averaged28

basis to be modelled and coupled to the GSD. Verkoeijen et al. [43] proposed a formulation of the multi-29

dimensional PBE, where the particle attributes are re-cast in terms of their individual volumes of solid (s),30
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liquid (l) and gas (g). This modelling in terms of its individual volumes enables decoupling of the individual1

mesoscopic processes (i.e., aggregation, consolidation, etc. in Table 4 ) and one can model a single rate2

process at a time. The resulting multi-dimensional PBE is thus given as [44]:3

∂F

∂t
(s, l, g, t) + ∂

∂s

(
F (s, l, g, t)ds

dt

)
+ ∂

∂l

(
F (s, l, g, t)dl

dt

)
(5)

+ ∂

∂g

(
F (s, l, g, t)dg

dt

)
= <birth(s, l, g, t)−<death(s, l, g, t) (6)

This formulation has been used extensively due to the mutually exclusive character of the internal coordi-4

nates which substantially improves the numerical solution of the model as the rate processes with distinct5

time constants are segregated [40, 45–47]. Beyond this, it potentially prevents lumping in any of the di-6

mensions due to the heterogeneity of the population distribution with respect to its attributes, which could7

cause model errors [48].8

The increase in dimensions of PBEs causes complexities which have been listed by Pinto et al. [21]. Formu-9

lation of multi-dimensional so-called rate kernels to include the constitutive relations for the particle-level10

rate processes is challenging. Similarly, the numerical solution of such model equations is complicated and11

computationally expensive. Lastly, to ensure wider validity and predictive capability of these models, the12

development of instrumentation for detailed measurements is required not only at the macroscopic level,13

but also at the particle level, i.e. at microscopic levels.14

Formulation of Kernels15

Kernels contain the most important physics of the involved mechanism, and the development of multi-16

dimensional kernels that account for the dependence of the rates on particle properties (i.e., size, liquid17

content and porosity) requires a thorough understanding of the underlying physics. Some of the important18

properties of theoretical, experimental and mechanistic kernels which are widely found in literature and19

used in granulation studies involving aggregation and breakage mechanisms are discussed here to provide20

an overview.21

Aggregation kernels22

The aggregation kernel is essentially a measure of how frequent and successful a binary collision of two23

particles is. It is affected by two major factors: (1) collision probability of the specified pair of particles24

(related to transport); (2) successful aggregation or rebounding after collision (related to short range ef-25

fects) [49]. The discrete variant of the aggregation kernel βi,j(t) among the classes i and j is defined as the26

product of the collision frequency βi,j of the particles and the aggregation efficiency, β0(t) i.e.,27

βi,j(t) = β0(t) · βi,j (7)
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The first factor, β0(t), depends on various process parameters such as kinetic energies of particles, their1

path and collision orientation, particle characteristics (e.g. mechanical properties and surface structure),2

viscous dissipation between approaching particles and inter-particle forces, and granulation liquid proper-3

ties, aggregation mechanism, etc. Generally, β0(t) is assumed to remain constant throughout the experiment4

and is size independent [50]. The collision frequency βi,j is a function of particle size, gas velocity, system5

temperature, etc. Determination of the collision frequency function is a complex task in most of the models6

and it is very difficult to determine it from experimental data. However, an alternative way of retrieving the7

kernels based on experimental data is to solve the inverse problem [51, 52]. Braumann and Kraft studied the8

inverse problem occurring in a multidimensional population balance model describing granulation employing9

linear response surfaces [39] and second order response surfaces [53]. There are different collision frequency10

functions for kernels available in the literature based on theoretical, empirical and experimental calculations11

and observations (Table 6). These kernels have evolved from empirical to mechanistic and further to multi-12

dimensionality.13

14

Breakage kernel15

Evidently, the breakage functions of a PBM (eq. 2) are the breakage kernel, Kbreak(x, y), and the proba-16

bility distribution function, ζbreak(y). Compared to the aggregation kernel, research on the breakage kernels17

is still in its infancy. The kernels proposed in literature belong to two major categories: the algorithmic18

breakage kernels and the mechanistic breakage kernels [54]. To avoid the breakage kernel in high-shear gran-19

ulation models, Sanders et al. [55] and Biggs et al. [42] tried to model breakage as a negative aggregation20

rate process, by reporting a reduced aggregation rate constant. However, this approach had serious flaws,21

as aggregation is a second order rate process and breakage is a first order rate process and will not succeed22

without considering any physical basis [56]. Many attempts to model the breakage kernel have been made23

over the years (Table 7).24

The mechanistic breakage functions which are based on physicochemical models of the breakage process25

are usually very complicated and even hard to be approximated as simpler homogeneous functions [46, 56].26

However, almost all the algorithmic breakage functions are homogeneous and thus have been used extensively27

in the study of the general properties of the fragmentation equation in physics literature [54]. Dhanarajan28

and Bandyopadhyay [57] presented an energy-based model for HSWG processes, whereby the extent of29

granule breakage was considered to be directly proportional to the impact-energy and inversely proportional30

to granule strength. While their model simulation showed a close association with the experimental results31

for the granulation recipe, it missed a rigorous physical basis by assuming that kinetic energy was solely a32

function of mass, and not velocity and that all collisions were elastic (neglecting loss of kinetic energy due33

to inelasticity). Furthermore, the granule strength was primarily considered as a function of granulation34

liquid content, without taking the effect of liquid properties such as viscosity, surface tension and contact-35

10



angle into account. Recently, a mechanistic breakage kernel for a high-shear mixer granulator was presented1

by Ramachandran and co-workers [46]. The derived kernel is a function of several important material2

properties (i.e., powder and granulation liquid properties) and process/design parameters, which influence3

the intermittent and end-point properties of the granule.4

2.1.2. Solution of one- and multi-dimensional PBEs5

The derivation of a numerical scheme for efficient and accurate solution of population balance problems6

is quite difficult due to the association of integral terms with the hyperbolic equation. However, during the7

past few decades, many researchers have solved PBEs and as a result different numerical schemes have been8

developed. Several reviews of these schemes are available and have been also compared in terms of accuracy9

of calculation and required computational time [20, 22, 58–60]. The solution of a multi-dimensional problem10

is both difficult and computationally very expensive and therefore there are two different approaches to deal11

with an n-dimensional PBE: (1) computation on a complete model with computationally efficient techniques12

and (2) computation on a reduced model.13

Solving the complete PBE14

During the past few decades, a number of methods have been developed for numerical solution of PBEs.15

Among these methods, some are used to simulate the evolution of moments, while others are used to solve16

for the GSD explicitly. Methods available to solve for moments include various quadrature methods of17

moments [61–64]. On the other hand, to solve for GSD explicitly available methods include, methods18

of characteristics [34, 65], Monte Carlo techniques, [36, 66, 67] and discretised methods like, the fixed-19

pivot (FP) method [32, 34], the moving pivot method [33], the acCAT [30, 68], the hierarchical two-tier20

method [41, 69], the two-level discretisation algorithm [21], the finite volume method (FVM), the finite21

element method, finite-volume high-resolution method [70, 71] and most recently the Lattice-Boltzmann22

method [72].23

Although most of the conventional numerical techniques have been applied to multi-dimensional PBEs24

in various studies, [37, 38, 40, 41, 73] the increase in computational load with increase in dimensions of25

the PBEs presents the challenge of obtaining the solution in process relevant time frames. Consequently,26

solution methods such as Monte Carlo techniques which are computationally more efficient have received27

most attention [36, 39, 60, 73]. In a comparison study of three numerical methodologies, i.e., direct solution28

by discretisation, constant-number Monte Carlo (cNMC) and the direct quadrature method of moments29

(DQMOM), to a two-component aggregation PBE with a kernel that depends both on size and composition,30

Marshall Jr. et al. [60] showed that the cNMC method is in close agreement with the direct discrete solution31

in all cases which assumed to provide exact solutions however being computationally very expensive. The32

DQMOM method has been found to be highly accurate when the kernel is independent of composition.33

11



When the kernel is composition dependent, accuracy of this method was found to be variable and very1

sensitive to the details of the initial distribution.2

Due to the inherent nature of discretised methods to preserve the properties of the distribution, extensive3

work has been done particularly on the FP method and the CAT, which have been extended later to improve4

the applicability with increase in number of dimensions [30, 37, 74, 75]. To compare these developments by5

solving two-dimensional aggregation PBEs, Kumar et al. [76] found that the CAT is quite a stable scheme6

as compared to the FP method and improves the results both for the number density and for the higher7

moments. Thus, the formulation of the CAT can technically be extended to more than two-dimensional8

problems but it can be computationally very expensive which is also evident by the results shown by9

Barrasso and Ramachandran [47].10

The overall outcome of such comparison studies are always a compromise between prediction accuracy11

and speed. To account for more physical parameters in PBM and apply mechanistic kernels based on12

a Lagrangian model (such as from DEM) the direct solution methods based on Eulerian coordinates are13

known to be computationally more efficient. As such technique is not developed, discrete stochastic methods14

based on Monte Carlo techniques still have an advantage on efficiency along with other benefits addressed15

earlier.16

Reduced order multi-dimensional PBE17

For each additional component used in the pharmaceutical formulation, a new dimension shall in principle18

be added to the PBM. While this approach may work in theory, its increased computation time and19

complexity limits its applicability. A practically more feasible strategy is that a high-dimensional PBM can20

be reduced to several simpler models of lower dimension [42, 77, 78]. In a reduced order model, one or more21

granule characteristics are lumped into the remaining distributions. For example, a two-dimensional model22

given by23

∂

∂t
f(v, vL, t) =1

2

v∫
0

min(vL,v−ε)∫
0

β(v − ε, vL − γ, ε, γ)f(v − ε, vL − γ, t)f(ε, γ, t)dεdγ

− f(v, vL, t)
∞∫

0

ε∫
0

β(v, vL, ε, γ)f(ε, γ, t)dεdγ (8)

where, the granule is represented by total volume, v = vs + vL, and vL, volume of the liquid. In this 2-D24

model, the coordinate space x = (v, vL) can be reduced to two 1-D equations, by assuming that all of the25
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granules of a given size have the same liquid content, as follows [42]:1

∂

∂t
n(v, t) = 1

2

v∫
0

β(v − v′, v)n(v − v′, t)n(v′, t)dv′ − n(v, t)
∞∫

0

β(v, v′)n(v′, t)dv (9)

2

∂

∂t
M(v, t) = 1

2

v∫
0

β(v − v′, v)M(v − v′, t)n(v′, t)dv′ −M(v, t)
∞∫

0

β(v, v′)n(v′, t)dv (10)

Reduced order models simplify the solution of the model, but they are not exactly equivalent to the full3

model. Hounslow et al. [77] warned against model order reduction for parameters that influence the rates,4

as it is expected that these rates are a function of composition such as the liquid content within individual5

granules. Recently, Barrasso and Ramachandran [47] compared a full 4-D model with a combination of6

lower-dimensional models resulting from a model reduction using the lumped parameter technique, and7

showed that although the 3-D model with a lumped solid volume yielded results similar to the full model, it8

showed differences in the distribution of composition with diameter. This drawback is probably most relevant9

since the composition is important in multi-component granulation processes with respect to pharmaceutical10

production.11

Rigorous calibration and validation of the PBM is key for scientific and commercial acceptance, but is12

equally challenging due to high variation in the process output. In the modelling of granulation processes13

discussed so far, the inverse problem is often unavoidable. Therefore, experiments have to be carried out14

in order to identify and measure the unknown model parameters, e.g. aggregation rate constants [51–15

53, 73]. Such parameter estimation is normally done through fitting the model to the experimental data16

obtained from measurement of macroscopic quantities and will be discussed in section 2.2. Once these model17

parameters are validated, the model can be employed for predicting the granulation process using the system18

under consideration.19

2.1.3. Discrete Element Method20

Whilst the majority of granulation research at the meso- and macro-scales has been performed us-21

ing PBM, the DEM approach bridges the gap between micro- and meso-scales [78–82]. There are two main22

classes of discrete element methods which have been used in granulation modelling: hard-sphere methods23

and soft-sphere methods, each with their state of development, relative advantages and drawbacks (Table 8).24

These approaches have been applied and reviewed by several researchers [79, 82–85], and a wide variety of25

different granulation systems have been modelled. The hard-sphere method assumes that particles are rigid26

so that collisions are instantaneous and binary, which is not valid in highly dense HSWG systems where27

particle contacts are long-lasting, have low coefficients of restitutions and involve multiple particles. In the28
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Figure 4: Representation of normal and tangential contact forces using a spring, dash-pot and slider approach [86].

soft-sphere model, on the contrary, contacts are not assumed to be instantaneous and more than one contact1

at a time is possible.2

Developed by Cundall and Strack [86], soft-sphere DEM has been preferably used in granulation mod-3

elling where positions, velocities, accelerations and the trajectories of every particle are tracked by solving4

Newton’s second law of motion in a particulate assembly individually. This method allows deformation of5

particles which is modelled as an overlap of the particles in a collision event. The forces are expressed with6

the use of a spring, dash-pot and slider which separate forces into normal and tangential forces as shown in7

Figure 4. The linear and angular momentum equations for each granule in the granulator are given by8

mi
dvi
dt

= m~g +−→Fp +−→F w (11)

9

Ii
dωi
dt

= −→Mp +−→Mw (12)

The sum of applied forces includes contributions from contact forces resulting from particle-particle and10

particle-wall collisions and the gravitational force m~g. The viscous drag force is often assumed negligible in11

high-shear dense granular systems. The associated moment is the sum of the moments of particle-particle12

(−→Mp) and particle-wall (−→Mw) collisions.13

DEM models have some advantages over PBM in terms of ability to define complex particle-particle14

interaction laws and to allow distribution of properties, for instance, distribution of sizes or varying material15

properties to model a mixture of various components. Since powder characteristics and essential hydrody-16

namic parameters regarding liquid-solid interaction, particle mixing and segregation are lumped into the17

kinetic rate constants, PBM cannot be applied for a-priori process design, unlike DEM. Moreover, DEM18

can be used to calculate many particle-scale quantities of interest such as local concentrations and particle19

phase stresses, as well as to examine particle-level phenomena such as segregation or aggregation, as the20

location of the particles along with the velocity field is known throughout the simulation [79, 81]. However,21
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this all comes at a high computational cost, which is due to the small integration time-step used in DEM,1

so that particles only have contact with their nearest neighbours. Overlap between particles is assumed to2

be small in comparison to their size. Since this approach demands significant computational power, DEM3

cannot handle a very large number of particles which are present in high shear granulation. However, due to4

the steadily increasing speed of computer hardware and codes with parallel processing capabilities, the size5

of systems that can be modelled with DEM is continuously increasing. Some recent DEM models simulate6

systems in the order of a couple of hundred thousand till more than a million particles [78, 87] and, recently7

the DEM method has been used in scale-up studies [81]. Also, in a study for continuous HSWG using TSG8

the DEM has been very valuable to predict the velocity profile of the powder materials which was then9

used to calculate the residence time distribution (RTD) in a twin-screw granulator, which is otherwise very10

hard to measure [88]. Talu et al. [89] modelled aggregation and breakage in 2D shear flow of a mixture of11

"wet" and "dry" particles showing the effect of the amount of granulation liquid, the Stokes number, and the12

capillary number on the GSD. Muguruma et al. [90] modelled a centrifugal tumbling granulator where13

the liquid was uniformly distributed. The resulting velocity profiles were in agreement with experimental14

data using glass beads of the same size. Mishra et al. [91] examined the aggregation of particulates in a15

rotary drum with a model that included a spray zone and also considered the drying of particles. The first16

significant effort for DEM modelling for HSWG systems was undertaken by Gantt and Gatzke [79], which17

incorporated three key mechanisms of granulation, i.e. aggregation, consolidation, and breakage. The rates18

of each mechanism were directly simulated and integrated to model a dynamic GSD. The results from this19

DEM model were in good agreement with other approaches such as PBM along with additional capability20

to model dynamic operating conditions. Later Gantt et al. [78] also used the hybrid approach where a DEM21

model with periodic boundary conditions was used to represent flow in a high-shear granulator. The particle22

collision statistics compiled by the DEM simulation were used to develop an aggregation kernel, which was23

used with a Monte Carlo method to solve multidimensional PBEs. Good agreement with experiments was24

observed in terms of velocity flow fields. Recently, Liu et al. [85] investigated the transverse mixing of wet25

particles in a rotating drum to investigate the effects of liquid surface tension, drum rotation speed and the26

filling level on particle mixing. DEM was proposed to estimate the circulation periods at different stream-27

lines which were comparable with the simulation results, thus providing a general method to predict mixing28

performance in the transverse plane. Granulation in fluidized beds has also been modelled using DEM by29

several researchers [92–94].30

While these studies indicate a trend of increasingly applying DEM as tool to simulate dense particle31

systems, there has been no satisfactory effort to calibrate the DEM in order to be able to reproduce the32

complicated granulation process and deploy the versatility of DEM. The calibration process in DEM is33

a typical inverse problem similar to PBM and is usually carried out based on data from laboratory test34

results, which are compared with simulation results for the identified parameters in terms of change in35
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shape, size, strength etc. However, compared to PBM, the calibration and validation of DEM models do1

not appear to be as rigorous and the procedures certainly are not as well defined. There are several micro-2

scale related parameters involved in determining the macro-scale behaviour for granules. For calibration of3

granulation processes incorporation of micro-scale material properties such as wet granule yield strength,4

Young’s modulus, and asperity size are required along with material flow characteristics such as velocity and5

shear fields. Efforts to develop a calibration and validation procedure for DEM based on experimental data6

have already been taken in other processes (e.g. for discharge flow in silos [95] and mixing in the turbula7

mixer [96]). However, despite the fact that a number of measurement tools are already in place for HSWG8

(section 2.2), development of a detailed calibration and validation procedure for DEM applied to HSWG will9

require several other measurement tools to be developed as well (section 2.2) to achieve sufficient process10

understanding.11

2.2. Measurement techniques12

The literature reveals that a wide variety of measurement techniques have been applied to measure and13

understand the critical process parameters (CPPs), critical quality attributes (CQAs) and their relationships14

in HSWG. The most frequently reported measurement techniques for HSWG are overviewed in Table 9.15

This table furthermore highlights for which type of model the measured value could be useful as calibration16

and validation input. Although there is sparse work on the model calibration and validation, some of the17

available studies are cited for reference. Finally, the capability of each measurement technique for real-18

time monitoring and, hence its applicability to continuous granulation processes is indicated. Discussions19

on validation studies have appeared considerably more frequently in the literature than those regarding20

calibration. Most validation studies for granulation models have been qualitative and rely on data from21

visualisation of experimental flows where the observations are used to validate granulation models for high-22

shear granulators [46, 55, 97, 98]. The qualitative studies have primarily focused on model fitting of endpoint23

determination parameters such as granule size and their physical properties. As the in-line measurements24

during HSWG are very complex and challenging due to the high shear conditions these studies applied mostly25

offline measurement tools. However, several in-line measurement techniques for determination of the GSD26

have been recently developed as well. Focused beam reflectance measurement (FBRM) and Parsum (Spatial27

Filtering Velocimetry) are designed to directly track real-time changes in particle size and distribution in28

the process [14]. Betz et al. [99] have described a technique for measuring tensile strength of granules, in29

addition to power consumption measurement, to facilitate optimal endpoint determination. Also, near-infra30

red spectroscopy (NIR) and Raman spectroscopy have shown to be promising due to their ability to provide31

both chemical as well as physical information such as moisture content and particle size of the samples32

while monitoring in-line [100]. Other data handling techniques reported in the literature include the use of33

neural networks to describe and predict the behaviour of the wet granulation [101] or control of the endpoint34
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in HSWG on the basis of the data acquired with a high-speed imaging system [102] and audible acoustic1

emission (AE) piezoelectric sensors. However, extraction of useful information often requires chemometric2

model development and validation [103]. All these techniques have shown to be promising for application3

in HSWG, and eventually they can be used to validate various conceptual models of the process. However,4

each process analyser has its own limitations hampering its application as an accurate in-line monitoring5

and endpoint determination tool (see table 9). Therefore, adaptations to the various analysers are now6

being made to solve some of these issues. For example, in new equipment set-ups for the HSWG, the air7

exhaust has been used to suspend the AE sensor, which eliminates the challenge of maintaining consistent8

contact between the sensor and the vessel. This allows measurement of a variety of particle interactions9

instead of localized contacts between the particles in the granulator [104]. Similarly, the fouling issues10

of the FBRM probe have been solved by providing a pressurized air activated mechanical scraper on the11

sapphire measurement window to prevent powder from sticking. The effectiveness of the scraper has already12

been proven in the harsh conditions of a high shear granulator [105].13

The visualization of experimental flows during validation studies is very challenging due to the opacity14

of bulk solids which limits the applicability of visualization techniques. Tomographic techniques have also15

been developed towards validation of 3D granular systems. These techniques are non-intrusive and are16

not hindered by the opacity of solids. Therefore, they are used to probe the internal microstructure and17

particle velocities within 3D systems. Nuclear magnetic resonance (NMR) has been used for validation18

of a long rotating cylinder [106] and the packing of particulates has been examined using X-ray micro-19

tomography [107]. Nilpawar et al. applied an optical technique which is known as Particle Image Velocimetry20

(PIV), where the powder surface provides the texture for determination of surface velocities [108]. The21

shortcoming of PIV in terms of its capability to interrogate only the powder surface, has been solved by22

application of the Positron Emission Particle Tracking (PEPT) technique which provides an excellent means23

to interrogate the powder flow patterns in wet granulation [109]. There are still some challenges as it is24

difficult to obtain spatial high-resolution data through PEPT and also the temporal averaging required25

makes tracking of the changes in bulk motion during a granulation process very difficult [110]. However,26

such developments are very important as they will aid in obtaining better process visualisation and gaining27

deeper process knowledge and thus they are potentially useful to support the development of strategies for28

achieving process consistency and improved control in the context of PAT applications.29

3. Industrial needs and opportunities for continuous HSWG modelling and measurements30

Despite the large amount of research that has been done on modelling and measuring the granulation31

process, much of the work done in this area is still far from application in the pharmaceutical industry.32

This is partly due to the fact that the granulation studies have been usually approached from either a33
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process engineering (modelling) or a pharmaceutical sciences (measurements) point of view (see figure 3).1

To have more insight in an optimal granulation process both disciplines have to be integrated. An increased2

knowledge about rate processes, their interaction and quantification by advanced measurement tools, along3

with model refinement are required in order to improve the prediction of the process state in a continuous4

system. This will also help in establishing significant process understanding required in order to success-5

fully shift towards continuous processing in solid dosage manufacturing. Continuous HSWG is performed6

using TSG, characterized by a modular screw profile including a sequence of different screw elements with7

various shapes, orientation and functions. Because the residence time is very short in TSG, in general, it is8

possible to achieve a quasi steady state operation in a few minutes from the start. This state is measured9

in terms of parameters such as steady torque, stable temperatures, and an acceptable granule quality. Al-10

though a stabilization period is needed to reach steady-state conditions the granules and tablets produced11

during quasi-steady state operation were reported to be within specifications [111]. Key independent pro-12

cess variables of the HSWG process using TSG include screw configuration, screw speed, temperature and13

locations for liquid feed. The key dependent process variables are feed rates of the formulation powder,14

granulation liquid feed rate and motor torque. The screw design influences the granulation characteristics15

and the overall processability for a given formulation, i.e. the achievable dry powder blend throughput. For16

a given screw design and screw speed, the maximum powder feed rate is defined by the rate at which the17

torque is 80% of the manufacturer-recommended limiting torque [112]. The maximum liquid feed rate is18

defined depending on the moisture-carrying capacity of the formulation powder blend.19

From a process technology perspective, a TSG is often divided into different zones, e.g., feed (twin screw20

granulators are generally fed from external feeders), wetting, mixing, and others (Figure 5). The processing21

zones of the TSG are arranged in series, linking each granulation step to the next. Analysing each granulation22

step in the TSG to a satisfactory degree is only possible when sufficient information on the rheo-kinetic23

characteristics (such as apparent viscosity) of the granulation mixture is available. However, providing these24

data is very difficult, particularly in the zone with considerable change in phases (e.g. intrinsic moisture in25

granules gets squeezed out in the kneading zone). The modular structure complicates the process design as26

the processing zones are not just governed by the screw profile only but also by factors such as the critical27

moisture content (solid to liquid ratio) of the particle required for aggregation to occur. This reinforces28

the need to resort to process modelling and real-time measurements for development of improved process29

understanding. To understand mixing and granulation using different screw configurations, simulation tools30

could be useful to reduce the amount of experiments needed in industrial practice. By using in-process31

measurements, combined with a mechanistic modelling framework, one can have a good mechanistic insight32

into the important parameters of continuous TSG. Also worth mentioning is that extrusion based devices33

have been applied successfully in plastics and food industries for several decades, and thus a wealth of34

relevant knowledge on modelling and measurements developed in these industries during the past years can35
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be obtained [113]. However, it is also necessary to identify fundamental differences between a twin-screw1

extruder and TSG design in terms of other structures such as the die (where pressure is built up for shaping)2

which is not present in TSG.3

3.1. Needs of modelling TSG4

There are different goals for modelling TSG including improved process knowledge, screw design opti-5

misation, simulation of individual effects, qualitative studies, or developing online monitoring and control6

solutions. Several experimental studies have been performed to investigate the effects of key process vari-7

ables [14, 114, 115], screw configurations [88, 98, 116, 117], and also to make the regime map [118] of8

the TSG. However, an integrated effort is required for linking new experimental and theoretical findings9

regarding granulation mechanisms and kinetics into a coherent modelling framework.10

Results obtained from experimental studies on TSG have indicated that the mechanisms occurring in HSWG11

using continuous TSG are different from those in batch high shear mixers (HSM), since some of the rate pro-12

cesses given in Table 4 appear to be absent in case of HSWG using continuous TSG [3, 88, 119]. Attributed13

to the interlinked modular structure of the screws in TSG, this prompts for substantial process under-14

standing both at particle and containing barrel (system) levels, and thus requires a multi-scale approach.15

Applications of PBM (system level) and DEM (particle level) approaches in granulation have already shown16

their relevance in modelling batch granulators and mixers. Hence, the opportunity exists to adapt these17

modelling approaches for appropriate numerical analysis of TSG. However, this adaptation requires consid-18

eration of material and equipment properties along with a comprehensive list of process variables and status19

(Figure 6). These basic models at different levels should be linked using multi-scale integration frameworks20

in such a way that the granule scale model needs to supply the agglomeration kernel to the system scale21

model [120]. To do so, the granule scale model requires the current GSD and the volumetric hold-up of the22

granules from the barrel scale. This approach has provided good results in other studies with continuous23

drum [121] and fluidized bed granulators [50].24

Various studies have shown that changes in screw configuration (number and location of transport and25

kneading elements) lead to different granulation GSDs and granule properties [98, 117, 118]. This indicates26

that although operational regimes are not completely decoupled along the length of the granulator, specific27

individual rate processes will preferably take place in certain screw regions. Any change to the screw config-28

uration also changes the dominance of one granulation mechanism over the other. Thus the spatio-temporal29

variation in the macro-environment of the particle dictates the change in the granulation regime in the TSG30

unlike well-mixed systems. In the current PBM for batch granulation processes, the hydrodynamic param-31

eters are lumped in the rate kernels such that one global equation is applied. However, such assumptions32

are not valid for TSG with modular structure, and therefore a multi-scale modelling approach is required in33

which DEM and PBM are combined via a compartmental model (CM) to include the system heterogeneity34
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Figure 5: Interlinked granulation zones in a twin-screw granulator.

in the continuous TSG. This approach has already been applied to mixing and coating equipment which1

involved particle flow patterns having a strong influence on coating distributions [27]. Very recently, a sim-2

ilar approach was applied by Bouffard et al. [28] to rotor based equipment where a CM was used to model3

particle flow in different zones of the equipment. The PBM based on time-continuous Markov chain received4

kernels from DEM to simulate particle motion in each compartment. The results from the study proved5

that such an approach improves the accuracy of the population balance model while the flow pattern of the6

particles is also successfully modelled. In short, TSG modelling requires the inclusion of spatio-temporal7

variations occurring within the system.8

The process in the granulator is perceived as a spatially one-dimensional process for simple representation,9

i.e. the individual processes happen along its length axis in different zones. On the other hand, individual10

effects over the screw cross-section, such as some "fields" are impossible or extremely difficult to measure11

due to the number of factors (operational parameters and material properties) involved. However, such pa-12

rameters are required for the reliable prediction of a number of factors such as mixing degree and moisture13

content of the formulation mixture in the granulation critical region of the barrel. To this purpose, process14

models with at least a two or ideally a three-dimensional spatial consideration are needed. The accuracy of15

the model, however, depends on the material data used and the peripheral conditions. The spatial borders16

of the model (between the two screws and between the screw and barrel) require boundary conditions to be17

defined and stated.18

The co-rotating screws are generally operated continuously, so the focus of modelling is on steady processes19

for process study. However, in addition to the spatial model dimensions, time may be a key factor in TSG.20
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Therefore, key granulation parameters such as granule size, moisture content, and segregation patterns which1

exist in the form of a distribution can be a characteristic function of the local residence time and RTD of2

the granulation powder along with the spatial variation in the process model. A pharmaceutical granula-3

tion mixture with two or more main flow components travelling differently can cause segregation leading4

to quality problems identified in later processing steps. Numerous attempts have been made to model and5

predict RTD in engineering research using TSE in similar isothermal operation. Gao et al. [122] recently6

reviewed RTD modelling methods including the investigations focused on the co-rotating twin-screw extru-7

sion devices. The application of DEM or CFD simulation provides particle tracking information which can8

be used to derive the RTD. However, computational data should be validated with experiments before the9

simulated RTD profile can be applied in practice with confidence [123, 124].10

Thus, the possibilities of the modelling approaches are numerous and can be summarized as: (1) Mod-11

elling tools are capable of providing information on process values (pressure, power, stress, etc.) with little12

effort; (2) Application of l-D spatial models are limited to the granulation kinetics and can provide informa-13

tion about the changes in the process values along the screw geometry; (3) For detailed knowledge on the14

granulation process in a continuous system, "field" variables such as rheological effects have to be linked with15

kinetic parameters in the process model; (4) The detailed modelling approach can enable a rapid process16

window definition and will help in determination of the effects of changing screw configuration (or geometry),17

process values and materials; (5) A CM based approach is required to include the system heterogeneity in18

the continuous TSG (6) RTD determination requires both computational and experimental efforts so that19

the simulated RTD profile can be validated.20

When making a choice between all the possibilities for constructing a process model, limitations are21

caused by the fact that modelling and simulation are confined to systems with very specific material prop-22

erties. Moreover, limited computational power is a major limitation as well. The theory often contains23

parameters that are not experimentally accessible (such as capillary (surface tension) forces for the aggre-24

gation) and this limits its application. Therefore the potential for a successful process modelling study for25

HSWG in TSG lies either in simpler models with limited applications or in proper planning of modelling26

studies by (a) defining modelling goals and objectives, (b) determine suitable modelling tool, (c) determin-27

ing required experimental data, (d) choosing measurement tools to acquire that data and finally (e) apply28

measured data for model calibration and validation.29

3.2. Tools for measurement of state variables30

There has been a significant development in the measurement techniques for end-point determination31

parameters as discussed previously (section 2.2). While, many of these currently measured variables are32

applicable to various modelling approaches as given in Table 9, more analytical methods are needed to33

measure other internal process characteristics (e.g., degree of mixing, moisture content, shear). The devel-34
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Figure 6: Key parameters for measurement and modelling of a twin-screw granulator.

opments in measurement tools thus far primarily focused on measuring variables, which are either quality1

parameters themselves or indirectly used to determine the quality of granules as discharged product (such2

as torque, NIR). Fonteyne et al. [14] and Vercruysse et al. [115] have evaluated the CPPs and CQAs influ-3

encing the granule characteristics in a continuous granulation using TSG. For mechanistic understanding4

of the granulation process in TSG and validation of rheo-kinetic models, local information about numerous5

parameters such as "field" variables, granulation liquid content, filling degree of the barrel and many more6

mentioned in Figure 6 are required to be measured in-line throughout the granulator barrel. However, it is7

important to note that these measurements are only required in the stage of knowledge development and8

later on these measurements are not really required as with mechanistic understanding maybe correlations9

between them and more easily measureable variables can be obtained.10

In the current measurement practices there are two general methods applied, those in which material11

is withdrawn for analysis, and the other in which material remains in the process and the observation is12

taken from a free surface or from material next to a wall which is transparent [125]. Free surface sampling13

are only easy in processes containing air and operating close to atmospheric conditions which is not the14

case in granulation using TSG. Being an opaque multiphase system, several crucial process parameters15

in TSG such as mixing and filling degree of the barrel which cannot be easily measured and monitored16

during the granulation are correlated with the mechanical power consumption and in-line dynamic torque17

of the TSG [126]. However, the real world is 3-dimensional and 0-dimensional measurements such as a18

torque measurement generally relate to the entire screw, making such measurements not suitable to provide19

local information. In the plastic and food industries where TSE has been used extensively, such studies20

have been performed by having small windows in the side of a metal barrel or by using a transparent21

barrel in combination with probes such as Laser Doppler Anemometers [127, 128]. The other approach22

consists of flow visualization in a barrel using radioactive particle tracking methods such as PEPT, or23

imaging techniques such as PIV [129]. The obtained velocity profile in TSG has further been utilized to24

construct RTD profiles [88] and study the effect of a change in viscosity of the granulation liquid [130].25

Several techniques, which are being used in other areas of research, also facing the challenge of opaque26

multiphase systems need to be investigated. For instance, magnetic resonance imaging (MRI) is capable27
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of examining various systems and processes non-invasively and non-destructively to provide temporal and1

spatial information through concentration mapping in a TSG [131].2

In recent years, considerable attention has been paid to the development of several rapid and non-3

destructive so called online soft sensing methods to estimate hard-to-measure online quantities through4

chemometric models. In essence, the core of a soft sensor is the soft sensing model, which on the basis5

of other measured variables generates a virtual measurement to replace a real sensor measurement [132],6

for example for a variable that is difficult to measure otherwise. The introduction of PAT has led to7

a tremendous increase of the number of spectroscopic applications in the pharmaceutical industry. The8

capability and applications of NIR and Raman spectroscopy to provide both chemical as well as physical9

information such as moisture content and particle size on a real-time basis using chemometric methods have10

been discussed in a previous section on measurement techniques. Soft sensors based on partial least squares11

(PLS) regression or principal component analysis (PCA) are often preferred, since these methods are well-12

known in the pharmaceutical industry which facilitates validation [133]. Nevertheless, it has been shown that13

a number of chemometric methods can effectively be used to extract relevant information; their application14

needs more investigation before introduction for field application. With the development of models of the15

underlying processes in TSG, preferably a model involving in-depth knowledge of the underlying physical16

phenomena of the process, prospects for application of soft sensors will improve.17

The possibilities of the measurement approaches can be summarized as: (1) 0-dimensional measurements18

such as torque are easy to implement, but do not provide local information required for a detailed process19

understanding. (2) Higher dimensional measurements are hard-to-measure on-line but mandatory. (3)20

Obtaining detailed information about the "field" variables in the screw cross-section using flow visualization21

in a barrel is possible now. Techniques such as PEPT which can provide detailed quantitative information22

on internal flow-patterns have a great role to play. (4) Developments in other research areas, also facing the23

challenge of opaque multiphase systems, should be explored. (5) Application of soft sensing methods has24

shown potential, but their application needs more investigation before introduction of soft-sensors for field25

application.26

4. Conclusions and perspectives27

This study provides a critical analysis of the current state of modelling and measurement practices28

in HSWG. It suggests paths forward for the development of models and measurement devices for continuous29

wet granulation processes in the pharmaceutical sector. From the current state of HSWG, it has been30

identified in this paper that:31

• A shift from batch to continuous processing is challenging but equally rewarding for the pharmaceutical32

sector, and continuous wet granulation is an important part of future continuous manufacturing of solid33
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dosage forms.1

• A systematic framework and scientific approach is necessary to utilise efficiently the opportunity2

provided by the regulators to increasingly rely on the science- and risk-based holistic development of3

processes and products for commercialisation.4

• First-principles and data-driven modelling approaches have great joint prospects and can play an5

important role in process design, optimisation and control of critical quality parameters in pharma-6

ceutical granulation, but they require a high degree of reliability and development to achieve the target7

of simulating and investigating real-time control of quality for unit operations such as granulation.8

• The available modelling methods show performance limitations as the dimensions of the model increase.9

This has motivated the need to develop more reliable and computationally efficient numerical methods10

to provide solutions which can be applied for online model based control.11

• Furthermore, rigorous calibration and validation is required for the granulation models to more accu-12

rately represent field measured granulation conditions.13

The future requirements and developments in modelling and measurement methodologies for implementation14

of continuous wet granulation in the pharmaceutical sector therefore are:15

• The modular structure of the twin-screw granulator is a central issue to be captured in the mod-16

elling and measurement techniques applied to the TSG. Understanding the changes in the process17

values along the screw geometry requires higher dimensional modelling and in-process measurements18

providing local information.19

• A single simple model cannot predict the complex granulation behaviour with shifting granulation20

regimes. Therefore, different parts of the granulation process should be described by different mecha-21

nistically based structural models.22

• Although simulation substantially increases the understanding of the processes involved, not all process23

steps of the TSG can be modelled due to the high computational burden.24

• The main challenge in the area of TSG exists in the development of new measurement techniques,25

which are able to measure the fundamental granule properties, preferably in situ.26

• Following extensive research conducted on software sensor technology in the last few years, also in other27

related fields facing the challenge of opaque multiphase system, it becomes more and more attractive28

for the industry to use software sensors in real applications.29
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List of Abbreviations4

(s, l, g) vector representing solid, liquid, and gas volumes of a granule5

β(x, y) aggregation kernel6

δ Delta-Dirac function7

Ż spatial velocity in the external coordinate8

µ liquid viscosity9

θ solid-liquid contact angle10

ε porosity11

F (s, l, g, t) population density of a granule at time, t12

l size of particles13

m total mass of the granule particle14

M(v, t) mass of granulation liquid in the size range15

n(x, t) number distribution of particles16

w fractional granulation liquid content17

x scalar-state variable that represents particle size18

γLV surface tension of the liquid19

τwetting theoretical liquid penetration time20

εS surface porosity21

ζbreak(x, y) the probability distribution function22

B0 nucleation rate23

Bagg(x) birth rate of particles of size x24
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Dagg(x) death rate of particles of size x1

Kbreak(x) breakage kernel2

l0 size of the nuclei3

rd radius of footprint of drop on powder surface4

Rpore effective pore radius based on cylindrical pores5

V0 total volume of drop6

AE Acoustic emission sensor7

CFD computational fluid dynamics8

CM compartmental model9

DEM discrete element method10

DIA Dynamic Image Analysis11

FBRM Focused beam reflectance measurement12

FVM finite volume method13

GSD granule size distribution14

HSWG high-shear wet granulation15

ICH International Conference on Harmonization16

MTR Mixer Torque Rheometer17

NIR Near-infra red spectroscopy18

PAT process analytical technology19

PBE population balance equation20

PBM population balance modelling21

PEPT Positron Emission Particle Tracking22

PIV Particle Image Velocimetry23

QbD Quality by Design24
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RTD residence time distribution1

RTRT Real Time Release Testing2

TSG twin-screw granulators3

US FDA United States Food and Drug Administration4

VoF Volume of Fluid5
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Table 1: Benefits and challenges of continuous processing

Benefits Challenges
Improved and more consistent quality More precise measurement and control required
Increased throughput Continuous flow and level measurement
Reduced inventory and associated storage Modulating flow and level control
Reduced raw material usage Real-time in-process quality measurement
Reduced waste products Real-time quality control
Improved process safety Integration of several unit operations, also w.r.t.

control
Reduced air, water and power utility usage Extensive personnel training, particularly for op-

erators
Reduced process footprint Redundant controls and instrumentation
Reduced clean-up time Rapid corrections to all process variations
Reduced operator involvement Advanced process control

Table 2: Various granulation processes used in the pharmaceutical industries

Method Process

Dry granulation
Direct compression
Slugging (double compression)
Roller compaction

Wet granulation

Low shear techniques
Low shear mixer
Fluid-bed granulator dryer
Continuous fluid-bed granulator/dryer

High shear techniques

High shear mixer
Continuous mixer granulator
Twin-screw granulator

Table 3: Comparison of high-shear wet granulation to other granulation techniques

Granulation Parameter High-shear wet
granulation

Other granulation
methods

Processing time Short Long
Operating conditions Narrow range Wide range
Use of granulation liquid Less More
For highly cohesive materials contain-
ing hydrophilic powder

Achievable Not achievable

Densification of granules Greater Lower
Friability of granules Less More
Process reproducibility w.r.t. uni-
form GSD

More Less

Reduction of process dust More Less
Granulation end point determination Predictable Poor predictability
Granule compressibility Less More
Hardness More Less
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Table 5: Physical modeling approaches in granulation studies
Model Advantages Challenges Ref.

1. Population
balance modelling
(PBM)

Simulate a very large
number of particles

Semi-mechanistic approach due
to lack of process knowledge

[40,
45–47]

2. Discrete element
method (DEM) Mechanistic approach Computational limitations when

very large number of particles [81]

3. Hybrid models
by combining PBM
with DEM

Capable of modelling the
complex dynamic mecha-
nisms by bridging micro-
scale to meso-scale

Hard to implement due to many
many difficulties, for example to
measure parameters such as wet
granule yield strength, asperity
height etc.

[134,
135]

4. PBM with Vol-
ume of Fluid (VoF)
methods

Mechanistic approach;
Can provide spatial dis-
tribution of binder in wet
granule

Hard to implement and requires
considerable simplification such
as ignoring dynamic change in
state of granulation liquid

[136]

5. PBM with Com-
putational fluid dy-
namics (CFD)

Mechanistic approach;
can be used for devel-
opment of simplified
models

Not suitable for dense particle
system; ignores particle-particle
interaction

[137]

6. PBM with Com-
partmental model
(CM) and DEM

Improved accuracy of the
population balance model
when the particle flow is
an important parameter

Number of particles is low while
stochastic solution methods of
PBM are adopted to avoid com-
putational limitations

[28]
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Table 6: Summary of chronological evolution of different collision frequency functions for aggregation kernels in the literature

Kernels Source
Shear kernel
β = β0.

4
3G(ai + aj)3 [138]

where G is the local velocity gradient.
Size independent kernel
β = β0 [48]
Size dependent kernel
β = β0

(x+x′)a

(x.x′)b [139]
Time and size dependent kernel
β = β0(t) · β∗(x, x′) [140]
where one is a time-dependent and the other a size-dependent function
Sequential kernel

β =
{
β0, t < tswitch

β1(x, x′), t > tswitch
[141]

where β0 and β1 are constants and tswitch is the time required to reach the final
equilibrium size distribution of the first non-inertial stage of granulation.
Cut-off kernel

β =
{
β0, w < w∗
0, w > w∗

where w = (x·x′)aAE

(x+x′)bAE
[142]

aAE , bAE , β0 are constants and w∗ is the critical granule volume.
EKE kernel (Equipartition of Kinetic Energy-kernel)
β = β0(x+ x′)2

√
1
x3 + 1

x′3
[143]

ETM kernel (Equipartition of Translational Momentum kernel)
β = β0(x+ x′)2

√
1
x6 + 1

x′6
[143]

physically based kernel

β = β0
St∗∫
−∞

f(Φ, t)dΦ [144]

where, f(Φ, t) is the discrete probability density function.
Kernel based on the different aggregation mechanisms

β|x,x′ =


β1 : for type I and type II coalescence with no permanent deformation
β2 : for type II coalescence with permanent deformation
0 : for rebound

[145]

Multidimensional kernel

β = β0 · (x3 + x′
3)
(

(cx + cx′)αM

(
100− cx+cx′

2

)δM
)αM

[146]

where cx and cx′ represent the volume percentage of binding agent in the agglomerates
x and x′ respectively, and αM and δM are fitted parameters.
Mechanistic kernel
β(i, j, t) = β0

qli−ql∗i

4π((di/2))2((qsi+qli)/vi) −
qlj−ql∗j

4π((dj/2))2((qsj+qlj)/vj) [40]
where, qli is the volume of liquid in class i, ql∗i; the volume of liquid in the voids in
class i, and vi refers to the volume of a single particle in class i.
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Table 7: Summary of chronological evolution of breakage kernels in the literature

Kernels Source
Semi-empirical breakage kernel
Kbreak(z) = P1Gshear(D(z))P2

2 [147]
where G is the shear rate, D is the particle diameter, and P1 and P2 are
adjustable parameters.
Product and sum-type :
Kbreak(z) = v z

q−1(1−z)q(v−1)−1

B(q,q(v−1))

Kbreak(z) = zq−1(1−z)v−2

B(q,v−1) + (v − 1) (1−z)q+v−3

B(1,q+v−2)) [148, 149]
where B is the beta function, v(y) = v(≥ 2) is the number of fragments per
breakage event and q > 0 is the parameter of the kernel.
Erosion-type kernels:

Kbreak(z) =


P1(z) for 0 < z < ε1

0 for ε1 < z < ε2

P2(z) for 1-ε2 < z < 1
with ε2 << 1. [150]

Sum of the powers-type kernel:
Kbreak(z) =

n∑
i=1

ciz
ki [151]

where ki ∈ (−2,∞). The coefficients ci must be such as to conserve the total
mass, that is

∑n
i=1

ci

ki+2 = 1
Discrete homogeneous kernels
Kbreak(z) =

n∑
i=1

aiδ(z − ci) [152]

Mechanistic breakage kernel

Kbreak(za) =
zaupper∑
za=1

σparticle
ext (za,zb)
σint(za) F (za)Na SA(za)

SA+WA+IA + σwall
ext (za)
σint(za)

WA
SA+WA+IA +

σimpeller
ext (za)
σint(za)

IA
SA+WA+IA + σfluid

ext (za)
σint(za)

[46]

where F is the particle density, WA is the total wall surface area, SA is the
surface area of an individual particle, IA is the impeller surface area and Na is
Avogadro’s constant, zaupper

are the upper limits of the finite volumes in each
of the dimensions.
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Table 8: Advantages and drawbacks of various DEM schemes

Hard-sphere models Soft-sphere models
Advantages:
1. High accuracy in the particle dynamics as
the Newtonian equations of motion for each
individual particle are solved with inclusion
of the effects of contact forces acting on the
particles and gravitation.

1. Promising tool for studying the effect at
particle level of changes in some of the physical
parameters involved in the granulation pro-
cess.

2. Larger number of particles can be included
into the hard-sphere models compared to soft-
sphere models.

2. Theoretical particle level models may be
validated using the soft-sphere approach as
numerous variations in the physical/chemical
parameters may be simulated relatively fast
once the simulation program is set up.
3. Well suited for studying the modelling of
impact breakage of pre-existing agglomerates
which is important in high shear granulation
systems.

Drawbacks:
1. Generally not suitable for realistic represen-
tation of the granule micro-structure (i.e. the
internal distribution of primary solids, granu-
lation liquid and porosity of the granule).

1. Struggle with high computational process-
ing demands.

2. Present models are only capable of account-
ing for 1 million particles at a time, thereby
making simulations comparable only to exper-
imental data from laboratory scale equipment.

2. Detailed information of binary collisions is
far from being representative of the situation
inside a dense particle high shear system and
requires more research.
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d
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